《离散数学》学习笔记

截图来自于https://www.icourse163.org/course/UESTC-1002268006

集合论基础

不含任何元素的集合是空集 空集是绝对唯一的
对于一个具体的范围 考虑的所有对象的集合是全集 记作U或E 全集是相对唯一的
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
证明集合相等:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
幂集也叫做集族或集合的集合,对集族的研究在数学方面、知识库和表处理语言以及人工智能等方面都有十分重要的意义。
并集:
在这里插入图片描述
交集:
在这里插入图片描述
补集:
在这里插入图片描述
差集:
在这里插入图片描述
对称差集:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
等势:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

命题逻辑

在这里插入图片描述
一切没有判断内容的句子 ,如命令句(或祈使句)、感叹句、疑问句、二义性的陈述句等都不能作为命题。

原子命题(简单命题) :不能再分解为更为
简单命题的命题。
复合命题:可以分解为更为简单命题的命题。这些简单命题之间是通过如“或者"、"并且”、"不”、 “如果…则…”、“当且仅当”等这样的关联词和标;点符号复合而成。
否定连接词:
在这里插入图片描述
合取连接词:
在这里插入图片描述
析取连接词:
在这里插入图片描述
蕴含连接词:
在这里插入图片描述
在这里插入图片描述
等价连接词:
在这里插入图片描述
总结连接词特点:
在这里插入图片描述
1所有五个联接词的优先顺序为:否定,合取,取,蕴涵,等价;
2同级的联结词,按其出现的先后次序(从左右) ;
3若运算要求与优先次序不一致时,可使用括号同级符号相邻时,也可使用括号。括号中的运算为最高优先级。

常值命题、命题变元:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
真值表:
由公式G在其所有可能的解释下所取真值构的表,称为G的真值表(truth table)。

永真、永假、可满足公式:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
极大项、极小项:
在这里插入图片描述
在这里插入图片描述
极小项性质:
在这里插入图片描述
极大项性质:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
主范式求解定理:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
推理定律-基本蕴含关系
在这里插入图片描述
推理规则:
在这里插入图片描述

在这里插入图片描述在这里插入图片描述在这里插入图片描述

谓词逻辑

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
推理形式:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

各种定义:

1.客观世界中可以独立存在的具体或抽象对象称为个体,表示个体的词称为个体词。若个体词以常量的方式表示特定个体,则称之为个体常量;若个体词以变量的方式泛指不确定的个体,则称之为个体变量

2.个体变量的取值范围称为个体域或论域。宇宙间所有的个体域聚集在一起构成的个体域,称为全总个体域

3.设𝑥1, 𝑥2, ⋯ 𝑥𝑛为𝑛个个体变量,其个体域均为非空集合 D,则定义在𝐷𝑛上取值于{0, 1}的𝑛元函数称为𝑛元简单命题函数,记为𝑃(𝑥1, 𝑥2, ⋯ 𝑥𝑛)

4.简单命题函数通过“¬”、“∧” 、“∨”、“→”、“↔”等联结词进行逻辑演算得到的逻辑表达式,称为复合命题函数

5.对于𝑛元简单命题函数𝑃(𝑥1, 𝑥2, ⋯ 𝑥𝑛),将其中的函数名 P 称为谓词,将 n元简单命题函数𝑃(𝑥1, 𝑥2, ⋯ 𝑥𝑛)称为𝑛元谓词

6.对于𝑛元谓词𝑃(𝑥1, 𝑥2, ⋯ 𝑥𝑛),若将其中每个个体变量𝑥1, 𝑥2, ⋯ 𝑥𝑛分别指定具体的个体,由此得到的命题𝑃(𝑎1, 𝑎, ⋯ 𝑎𝑛),称为谓词填式,也称为命题的谓词式

7.对于给定的谓词 P(x),若个体变量 x 在其个体域内的所有赋值都使得 P(x)的取值为真,则称 P(x)得到全称量化,记为:∀𝑥𝑃(𝑥)。其中∀称为全称量词,∀后面的 x 称为其作用变量,∀𝑥的含义为“对于变量 x 个体域中的每个个体…”。

8.对于给定的谓词 P(x),若个体变量 x 在其个体域内至少存在一个赋值都使得 P(x)的谓词填式取值为真,则称 P(x)得到存在量化,记为:∃𝑥𝑃(𝑥)。其中∃称为**存在量词,**∃后面的 x 称为其作用变量,∃𝑥的含义为“变量 x 个体域中至少存在一个个体…”

符号使用规则
(1)个体常量符号:用带或不带下标的小写英文字母 a, b, c,…表示个体常量。
(2)个体变量符号:用带或不带下标的小写英文字母 x, y, z,…表示个体变量。
(3)个体函数符号:用带或不带下标的小写英文字母 f, g, h,…表示个体函数。所谓个
体函数,就是个体与个体之间的映射关系。
(4)谓词符号:用带或不带下标的大写英文字母 P, Q, R,…表示谓词。

谓词逻辑中的个体项,被递归地定义为:
(1)个体常量符号是个体项;
(2)个体变量符号是个体项;
(3)若𝑓(𝑥1,𝑥2,…,𝑥𝑛)是𝑛元函数,𝑡1,𝑡2,…,𝑡𝑛是个体项,则𝑓(𝑡1,𝑡2,…,𝑡𝑛)
是个体项;
(4)所有个体项都是有限次使用(1),(2),(3)生成的符号串。

10.设𝑃(𝑥1,𝑥2,…,𝑥𝑛)是𝑛元谓词公式,𝑡1,𝑡2,…,𝑡𝑛是个体项,则称𝑃(𝑡1,𝑡2,…,𝑡𝑛)为谓词演算的原子公式,简称为原子谓词公式

11.谓词合式公式亦称为谓词公式,它按下列递归方式定义:
在这里插入图片描述
12.假设𝐺(𝑥)是任意一个含有命题变量𝑥的谓词,在公式(∀𝑥)𝐺(𝑥)或(∃𝑥)𝐺(𝑥)中,(∀𝑥)或(∃𝑥)的作用变量 x 在𝐺(𝑥)中存在的范围称为量词(∀𝑥)或(∃𝑥)的辖域。如果辖域不是原子谓词公式,其两侧必须有括号,否则不应有括号。

(1)若量词后面有括弧,则括弧内的子公式就是该量词的辖域;
(2)若量词后面无括弧,则与该量词邻接的子公式为该量词的辖域。

13.假设𝐺是任一谓词公式,𝑥是𝐺的任意一个命题变量,如果𝑥出现在以它为作用变量的量词辖域之内,则称𝑥的出现为约束出现,称变量𝑥为约束变量;如果𝑥不是约束出现,则称其为自由出现,此时称𝑥为自由变量。

约束变量的换名规则:
(1)将量词中出现的变量以及该量词辖域中此变量的所有约束出现都替换为新的变量;
(2)新变量名一定要有别于辖域中的所有其它变量名

自由变量的代入规则:
(1)将公式中出现该自由变量的每一处都用新的变量替换;
(2)新变量不允许在原公式中以任何约束形式出现

14.若谓词公式 G 中不含自由变量,则称该公式为封闭公式或闭式

15.谓词公式 G 的每一个解释 I 由如下四个部分组成:
(1)确定非空的个体域集合 D;
(2)确定公式 G 中的每个常量符号的含义,即指定 D 中的某个特定的元素;
(3)确定公式 G 中的每个𝑛元函数的具体形式,即对于公式 G 中每个𝑛元函数分别指
定一个从 Dn到 D 中的特定函数与之对应;
(4)确定公式 G 中的每个𝑛元谓词符号的具体形式,即对于公式 G 中每个𝑛元谓词符
号分别指定一个从 Dn到{0, 1}的特定函数与之对应。

16.对于任意一个给定的谓词公式 G,如果 G 在其所有的解释 I 下的真值取值为真,则称 G 称为有效公式;如果 G 在其所有的解释 I 下的真值取值都为假,则称 G 为矛盾公式;如果 G 不是矛盾公式,则称其为可满足公式

17.假设 G 和 H 是任意两个给定的谓词公式,若公式𝐺 ↔ 𝐻是有效公式,则称公式 G 和 H 称为等值的,记为𝐺 ⇔ 𝐻,并称𝐺 ⇔ 𝐻为等值表达式或等值式

18.假设𝐺和𝐻是任意两个谓词公式,如果谓词公式𝐺 → 𝐻是有效公式,则称谓词公式𝑮逻辑蕴含谓词公式𝑯,亦称𝐺 与𝐻之间具有逻辑蕴含关系,通常简称为蕴含关系,记作𝐺 ⇒ 𝐻,并称该式为谓词公式的逻辑蕴含式,通常简称为蕴含式

**定理1.**假设𝐺(𝑥)和𝐻(𝑥)是任意两个谓词公式,则存在如下逻辑蕴含关系:
∀𝑥𝐺(𝑥) ∨ ∀𝑥𝐻(𝑥) ⇒ ∀𝑥(𝐺(𝑥) ∨ 𝐻(𝑥))
∃𝑥(𝐺(𝑥) ∧ 𝐻(𝑥)) ⇒ ∃𝑥𝐺(𝑥) ∧ ∃𝑥𝐻(𝑥)

前束范式是谓词公式中所有范式中唯一满足等值性质的方式。所谓满足等值性质,是指对于任意一个谓词公式,将其做规范化表示后所得到的范式与原谓词公式等值。本小节主要介绍前束范式的概念与构造方法。

19.假设 G 是任意一个谓词公式,如果 G 的一切量词都位于该公式的最前端(不含否定词)且这些量词的辖域都延伸到公式的末端,则称 G 是一个前束型公式。换句话说,谓词公式 G 作为前束型公式必须满足如下表达形式:
𝐺 ⇔ (𝑄1𝑥1)(𝑄1𝑥2) ⋯ (𝑄𝑛𝑥𝑛)𝑀(𝑥1, 𝑥2, ⋯ 𝑥𝑛)
其中𝑄𝑖为量词∀或∃,M 中不能含有任何量词,称 M 为谓词公式 G 的母式或基式

定理2.任意一个含有量词的谓词公式都可以转化为与之等值的前束型公式的形式,但是这种形式并不唯一。

20.假设谓词公式 G 是任意一个前束型公式,即有:
𝐺 ⇔ (𝑄1𝑥1)(𝑄1𝑥2)⋯ (𝑄𝑛𝑥𝑛)𝑀(𝑥1, 𝑥2, ⋯ 𝑥𝑛)
其中𝑄𝑖为量词∀或∃,M 中不含有任何量词。如果 G 的母式 M 是一个析取范式,则称 G 是一个前束析取范式;如果 G 的母式 M 是一个合取范式,则称 G 是一前束合取范式。前束析取范式和前束合取范式统称为前束范式

定理 3.任意一个含有量词的谓词公式都分别存在与之等值的前束析取范式和前束合取范式,但范式的形式并不唯一。

21.∃型前束范式
∃型前束范式将所有存在量词排在所有全称量词的左边,具体定义如下:
假设 G 是任意一个谓词公式,如果 G 具有如下形式:
𝐺 ⇔ (∃𝑥1)(∃𝑥2) ⋯ (∃𝑥𝑖)(∀𝑥𝑖+1) ⋯ (∀𝑥𝑛)𝑀(𝑥1, 𝑥2, ⋯ 𝑥𝑛) (4-13)
即所有存在量词排在所有全称量词的左边且G中至少含有一个存在量词,则称 G 是一个∃型前束公式,其中𝑀(𝑥1, 𝑥2, ⋯ 𝑥𝑛)为公式的母式,要求既不含任何量词也无任何自由变量。如果∃型前束公式的模式是一个析取范式或合取范式,则称该∃型前束公式为∃型前束范式

定理 4.假设 G 是任意一个谓词公式,则可将 G 转化为一个∃型前束范式,并且 G是有效公式当且仅当其∃型前束范式也是一个有效公式。

无∃型前束范式
另外一种斯科伦范式是仅保留全称量词的前束范式,称之为无∃型前束范式。对于任意一个谓词公式,可由下列方法构造其无∃型前束范式:
第一步 将该谓词公式转化为前束型公式。
第二步 将前束型公式转化为无∃型前束公式:在含有存在量词的前束型公式中,从左边数第一个存在量词开始,依次消除每个存在量词。消除的规则如下:如果存在量词∃𝑥的左边有𝑛个全称量词,则任取一个新的以这些全称量词的指导变元为自变量的𝑛元个体函数取代谓词公式中的所有𝑥的出现。特别地,当𝑛 = 0时,即∃𝑥的左边无全称量词,则在消除∃𝑥后,以论域中某个未在公式中出现的个体常量取代谓词公式中的所有𝑥的出现。
第三步 将无∃型前束型公式中不含量词的部分,即母式部分转化为析取范式或合取范式,便可得到所求的无∃型前束范式

定理 5.假设 G 是任意一个谓词公式,则可将 G 转化为一个无∃型前束范式,并且G 是永假公式当且仅当其无∃型前束范式也是一个永假公式。

22.设𝐺1, 𝐺2 ⋯ 𝐺𝑛,H 是一些谓词公式,如果它们满足下列性质:对于这些公式的任意一个解释 I,𝐺1, 𝐺2 ⋯ 𝐺𝑛在该解释下同时为真的情况下 H 在该解释下也为真,则称公式𝐺1, 𝐺2 ⋯ 𝐺𝑛可有效推出公式 H,或称由𝐺1, 𝐺2 ⋯ 𝐺𝑛得到 H 的逻辑推理为有效推理,记为𝐺1, 𝐺2 ⋯ 𝐺𝑛 ⇒ 𝐻,并称𝐺1, 𝐺2 ⋯ 𝐺𝑛为推理前提,H 为𝐺1, 𝐺2 ⋯ 𝐺𝑛的逻辑结论。

定理6.谓词公式𝐻是谓词公式𝐺1, 𝐺2 ⋯ 𝐺𝑛的逻辑结论,当且仅当下式:
𝐺1 ∧ 𝐺2 ∧ ⋯ ∧ 𝐺𝑛 → 𝐻
为有效公式

全称特指规则(简称 US 规则):这条规则具有如下两种基本形式,即:
在这里插入图片描述
US 规则的基本含义是:如果任意x 𝑃(𝑥)为真,那么对于论域中任何指定的个体𝑐,必有𝑃(𝑐)为真。其中,P 是谓词,(1)中的 y 是任意不在𝑃(𝑥)中约束出现的个体变量;(2)中的c为个体域中任意指定的一个个体常量。

存在特指规则(简称 ES 规则)
存在x 𝑃(𝑥) ⇒ 𝑃(𝑐)
ES 规则的基本含义是:如果存在x 𝑃(𝑥)为真,那么在个体域中必然至少存在某一个个体𝑐,
使得𝑃(𝑐)为真。其中,c 为个体域中使 P 成立的特定个体常量。

全称推广规则(简称 UG 规则):
𝑃(𝑦) ⇒ 任意x 𝑃(𝑥)
UG 规则的基本含义是:如果个体变量𝑦在个体域内取到每一个个体时都有𝑃(𝑦)为真,
那么必有任意x 𝑃(𝑥)为真。这里要求𝑥既不是𝑃(𝑦)中约束变量也不是𝑃(𝑦)中的自由变量,即要
求个体变量𝑥不能在𝑃(𝑦)中出现。

**存在推广规则(简称 EG 规则):**这条规则具有如下两种基本形式,即:
在这里插入图片描述
UG 规则的基本含义是:如果对于个体域中某个或某些指定的个体𝑐满足𝑃(𝑐)为真,那
么必有存在x 𝑃(𝑥)为真。其中,(1)式要求𝑃(𝑦)中无自由变量𝑥;(2)式中要求𝑐为个体域中的某
个或某些个体常量。

  • 8
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值