线段树(Segment Tree)(个人学习笔记,非详细教程)

对于一个数组不断进行修改,比如计算数组中任意区间的和,改变数组中的值再计算数组中任意区间的和。当一个数组很大的时候,计算起来时间复杂度就会很大,所以我们引入了线段树,把计算数组区间和和更新数组的时间平摊一下,把时间复杂度变成了O(log n),原本一个是O(n),一个是O(1)。
墙裂建议去看这个教程视频:https://www.bilibili.com/video/BV1cb411t7AM?from=search&seid=6755348794869031910
这个视频讲得非常棒!


当范围只有一个数时,这个数就是数组下标了。

start ~ end 是保存数组和的范围。这棵树类似于二叉树,虚节点用0表示。

根据图中观察可知,用以上方法来保存数组的和,一个节点(例如5号节点),它的左右节点分别为该节点乘2加1(11)和乘2加2(12)。即 left_node = node * 2 + 1、right_node = node * 2 + 2。

更新数组,同时更新线段树,自下而上更新。

最后就是求数组任意范围的和了。

以下代码实现中,所有函数前五个参数都是固定的,分别是:数组、线段树、线段树的节点以及数组的其中一段的范围(start ~ end)。

代码基于递归实现,不太了解的话可以在递归前输出节点来看看递归是如何进行的。

#include <iostream>
using namespace std;

#define MAX_LEN 1000 //可以根据实际需求来决定开的数组要多大

void build_tree(int arr[], int tree[], int node, int start, int end)
{
	if (start == end) {
		tree[node] = arr[start];
	}
	else
	{
		int mid = (start + end) / 2;
		int left_node = 2 * node + 1;
		int right_node = 2 * node + 2;

		build_tree(arr, tree, left_node, start, mid);
		build_tree(arr, tree, right_node, mid + 1, end);

		tree[node] = tree[left_node] + tree[right_node];
	}
}

void update_tree(int arr[],int tree[],int node,int start,int end,int idx,int val)
{
	if (start == end) {
		arr[idx] = val;
		tree[node] = val;
		//找到需要改的点,逐步回溯更新树的节点
	}else{
		int mid = (start + end) / 2;
		int left_node = 2 * node + 1;
		int right_node = 2 * node + 2;

		if (idx >= start && idx <= mid) {
		//当需要改的点在树的左边时,更新左边的树
			update_tree(arr, tree, left_node, start, mid, idx, val);
		}
		else {
		//否则更新右边的树
			update_tree(arr, tree, right_node, mid + 1, end, idx, val);
		}

		tree[node] = tree[left_node] + tree[right_node];//改完左边(右边)分支后更新节点
	}
}

int query_tree(int arr[], int tree[], int node, int start, int end, int L, int R)
{
	if (R < start || L > end) {
		return 0;//当需要计算的数组范围不在当前节点(数组和的范围)时,直接返回0
	}
	else if (L <= start && end <= R /* <-优化,去掉的话会做很多无用的重复操作 */ || start == end) {
		return tree[node];//返回当前树节点的值
	}
	else {
		int mid = (start + end) / 2;
		int left_node = 2 * node + 1;
		int right_node = 2 * node + 2;

		int sum_left  = query_tree(arr, tree, left_node,  start, mid, L, R);
		int sum_right = query_tree(arr, tree, right_node, mid+1, end, L, R);
		return sum_left + sum_right;
	}
}
 
int main()
{
	int arr[] = { 1,3,5,7,9,11 };
	int size = 6;
	int tree[MAX_LEN] = { 0 };

	//test build_tree
	build_tree(arr, tree, 0, 0, size - 1);// 本代码实现中这四个参数是最基本的
	                                      // 需要进行其他操作时,在四个基本参数再加上其他参数即可
	for (int i = 0; i < 15; i++)cout << tree[i] << " ";
	cout << endl << endl;
	//输出建好的树:36 9 27 4 5 16 11 1 3 0 0 7 9 0 0

	//test update_tree
	update_tree(arr, tree, 0, 0, size - 1, 4, 6);//把数组下标为4的元素改成6
	
	for (int i = 0; i < 15; i++)cout << tree[i] << " ";
	cout << endl << endl;
	//输出:33 9 24 4 5 13 11 1 3 0 0 7 6 0 0

	//test query_tree
	int s = query_tree(arr, tree, 0, 0, size - 1, 2, 5);//数组下标 2 ~ 5 的和
	cout << "s = " << s << endl;
	//输出:s = 29
	return 0;
}

36 9 27 4 5 16 11 1 3 0 0 7 9 0 0

33 9 24 4 5 13 11 1 3 0 0 7 6 0 0

s = 29

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值