对于一个数组不断进行修改,比如计算数组中任意区间的和,改变数组中的值再计算数组中任意区间的和。当一个数组很大的时候,计算起来时间复杂度就会很大,所以我们引入了线段树,把计算数组区间和和更新数组的时间平摊一下,把时间复杂度变成了O(log n),原本一个是O(n),一个是O(1)。
墙裂建议去看这个教程视频:https://www.bilibili.com/video/BV1cb411t7AM?from=search&seid=6755348794869031910
这个视频讲得非常棒!
当范围只有一个数时,这个数就是数组下标了。
start ~ end 是保存数组和的范围。这棵树类似于二叉树,虚节点用0表示。
根据图中观察可知,用以上方法来保存数组的和,一个节点(例如5号节点),它的左右节点分别为该节点乘2加1(11)和乘2加2(12)。即 left_node = node * 2 + 1、right_node = node * 2 + 2。
更新数组,同时更新线段树,自下而上更新。
最后就是求数组任意范围的和了。
以下代码实现中,所有函数前五个参数都是固定的,分别是:数组、线段树、线段树的节点以及数组的其中一段的范围(start ~ end)。
代码基于递归实现,不太了解的话可以在递归前输出节点来看看递归是如何进行的。
#include <iostream>
using namespace std;
#define MAX_LEN 1000 //可以根据实际需求来决定开的数组要多大
void build_tree(int arr[], int tree[], int node, int start, int end)
{
if (start == end) {
tree[node] = arr[start];
}
else
{
int mid = (start + end) / 2;
int left_node = 2 * node + 1;
int right_node = 2 * node + 2;
build_tree(arr, tree, left_node, start, mid);
build_tree(arr, tree, right_node, mid + 1, end);
tree[node] = tree[left_node] + tree[right_node];
}
}
void update_tree(int arr[],int tree[],int node,int start,int end,int idx,int val)
{
if (start == end) {
arr[idx] = val;
tree[node] = val;
//找到需要改的点,逐步回溯更新树的节点
}else{
int mid = (start + end) / 2;
int left_node = 2 * node + 1;
int right_node = 2 * node + 2;
if (idx >= start && idx <= mid) {
//当需要改的点在树的左边时,更新左边的树
update_tree(arr, tree, left_node, start, mid, idx, val);
}
else {
//否则更新右边的树
update_tree(arr, tree, right_node, mid + 1, end, idx, val);
}
tree[node] = tree[left_node] + tree[right_node];//改完左边(右边)分支后更新节点
}
}
int query_tree(int arr[], int tree[], int node, int start, int end, int L, int R)
{
if (R < start || L > end) {
return 0;//当需要计算的数组范围不在当前节点(数组和的范围)时,直接返回0
}
else if (L <= start && end <= R /* <-优化,去掉的话会做很多无用的重复操作 */ || start == end) {
return tree[node];//返回当前树节点的值
}
else {
int mid = (start + end) / 2;
int left_node = 2 * node + 1;
int right_node = 2 * node + 2;
int sum_left = query_tree(arr, tree, left_node, start, mid, L, R);
int sum_right = query_tree(arr, tree, right_node, mid+1, end, L, R);
return sum_left + sum_right;
}
}
int main()
{
int arr[] = { 1,3,5,7,9,11 };
int size = 6;
int tree[MAX_LEN] = { 0 };
//test build_tree
build_tree(arr, tree, 0, 0, size - 1);// 本代码实现中这四个参数是最基本的
// 需要进行其他操作时,在四个基本参数再加上其他参数即可
for (int i = 0; i < 15; i++)cout << tree[i] << " ";
cout << endl << endl;
//输出建好的树:36 9 27 4 5 16 11 1 3 0 0 7 9 0 0
//test update_tree
update_tree(arr, tree, 0, 0, size - 1, 4, 6);//把数组下标为4的元素改成6
for (int i = 0; i < 15; i++)cout << tree[i] << " ";
cout << endl << endl;
//输出:33 9 24 4 5 13 11 1 3 0 0 7 6 0 0
//test query_tree
int s = query_tree(arr, tree, 0, 0, size - 1, 2, 5);//数组下标 2 ~ 5 的和
cout << "s = " << s << endl;
//输出:s = 29
return 0;
}
36 9 27 4 5 16 11 1 3 0 0 7 9 0 0
33 9 24 4 5 13 11 1 3 0 0 7 6 0 0
s = 29