DDColor:AI图像着色工具,优秀的黑白图像上色模型,支持双解码器!

前言

在数字图像处理领域,图像上色 一直是一个重要的课题。传统的图像上色方法通常需要人工干预,耗时且效果有限。

然而,随着深度学习技术的发展,自动图像上色模型逐渐成为了研究热点。 其中,DDColor 图像上色模型以其出色的性能和便捷的使用方式备受关注。

项目介绍

DDColor 是一个由 阿里达摩院 研究的基于深度学习技术的 图像上色模型,它能够自动将黑白或灰度图像着色,使图像更加生动逼真。

该模型采用了先进的神经网络架构和训练技术,能够识别图像中的物体和场景,并为其添加逼真的颜色。

项目及演示:https://modelscope.cn/models/damo/cv_ddcolor_image-colorization/summary

论文:https://arxiv.org/abs/2212.11613

GitHub:https://github.com/piddnad/DDColor

Colab在线体验:https://github.com/camenduru/DDColor-colab

双解码器技术

DDColor 模型 包括一个图像编码器和两个解码器,分别是图像解码器和颜色解码器。图像解码器完成视觉特征的上采样过程,而颜色解码器基于一个 Transformer 进行颜色查询的解码。

具体而言,颜色解码器使用多尺度的视觉特征帮助颜色嵌入的学习,因此学习到强语义相关的颜色嵌入。

使用双解码器技术,DDColor能够同时考虑色彩分布和像素级详细信息,能实现高度真实的图像上色效果。

不仅能给历史黑白照片上色,还能对动漫或游戏中的风景进行真实风格的上色。

DDColor使用双解码器做了哪些事情?

DDColor 使用了双解码器来处理图片:一个是恢复图片的结构,另一个是决定图片每个部分的颜色。

这项技术的创新之处在于它不需要像以前的方法那样依赖于人工设置的规则,而是能够自己学习图片的内容并决定合适的颜色。

通过这种方式,DDColor可以更准确地给复杂场景的图片上色,减少颜色错误涂抹的问题,并且使得最终的图片看起来色彩更丰富、更自然。

DDColor工作原理

特征提取多尺度处理 、双解码器结构、颜色应用、色彩丰富度优化

使用及体验

1、运行依赖安装

方式一:如果有本地或云服务器计算资源,可以在本地或云服务器进行环境安装,以更灵活的方式体验算法模型。

方式二:如果觉得本地安装较为复杂,也可以在线运行 ModelScope 平台(阿里云官方模型平台) 提供的 Notebook。

Notebook 中预先安装了官方镜像,因此无需再进行手动环境安装,更加方便快捷。

2、图像准备

准备一张黑白图像或者彩色图像(输入一张彩色图像,也可以进行重上色),图像可以在本地或网络上。

例如,我们选取一张黑白照片:

3、调用 pipeline 进行图像上色

import cv2
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
 
img_colorization = pipeline(Tasks.image_colorization, 
                       model='damo/cv_ddcolor_image-colorization')
img_path = 'https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/audrey_hepburn.jpg'
result = img_colorization(img_path)
cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG])

这样,我们就获得了一张上色后的彩色图像(result.png),效果还不错!

更多的应用场景

DDColor图像上色模型可以在许多领域有广泛的应用前景,比如:

  • 影视后期制作:在影视后期制作中,可以利用DDColor模型对黑白老电影或影视剧进行着色处理,使其更具观赏性和商业价值。

  • 艺术创作:艺术家可以利用DDColor模型为黑白素描作品添加色彩,让作品更加生动。

  • 历史照片修复:对于黑白历史照片的修复和着色,DDColor模型也能发挥重要作用。

总结

DDColor 图像上色模型依托先进的深度学习技术,为用户提供了一种方便快捷的图像上色解决方案。

其高质量的着色效果和快速的处理速度使其在多个领域都具有广泛的应用前景,为图像处理领域带来了新的可能性。

### 如何使用 CycleGAN 和 DDColor黑白图像进行上色 #### 准备工作 为了实现这一目标,首先需要准备好所需的工具和环境。确保安装并配置好 Python 环境以及必要的依赖包。 对于 **DDColor** 的部署,按照官方说明完成以下操作: ```bash git clone https://github.com/piddnad/DDColor.git conda create -n ddcolor python=3.9 conda activate ddcolor pip install -r requirements.txt python3 setup.py develop pip install modelscope onnx onnxruntime ``` 下载对应的预训练模型文件,并将其放置于指定路径下[^5]。 而对于 **CycleGAN**, 可以通过 PyTorch 或 TensorFlow 实现来加载预训练权重。这里假设已经有一个可用的 CycleGAN 模型用于黑白到彩色转换的任务。 #### 数据准备 将待处理的 `img.png` 图片置于项目根目录或其他合适位置,以便后续脚本可以直接访问此文件作为输入数据[^1]。 #### 上色流程 可以先尝试单独运行两个不同的方法来进行对比实验,也可以组合两者的优势得到更好的结果。具体来说, - 使用 **DDColor** 处理图片时,可以通过调用其 API 接口传递参数如分辨率大小等;如果图较小,则可适当调整尺寸至 512×512 像素以优化性能表现[^2]。 - 当采用 **CycleGAN** 方案时,需注意选择合适的超参数设定,比如迭代次数、批次大小等因素影响最终输出质量。 下面是简单的Python代码片段展示如何集成这两个框架的功能: ```python from PIL import Image import numpy as np import torch from comfyui_ddcolor import apply_colorization # 自定义导入方式取决于实际安装情况 from cycle_gan_model import Generator # 同样自定义导入方式 def preprocess_image(image_path, target_size=(256, 256)): img = Image.open(image_path).convert('L') # 转灰度模式 resized_img = img.resize(target_size) array_data = np.array(resized_img)/255. tensor_input = torch.tensor(array_data[np.newaxis,...], dtype=torch.float32) return tensor_input.unsqueeze(0) if __name__ == "__main__": input_tensor = preprocess_image('./img.png') # 应用DDColor colored_by_ddcolor = apply_colorization(input_tensor)[0].cpu().detach().numpy() # 初始化CycleGAN生成器 generator = Generator() checkpoint = torch.load("path_to_cycle_gan_weights.pth") # 加载checkpoint generator.load_state_dict(checkpoint['model']) with torch.no_grad(): generated_output = generator(input_tensor.cuda()).squeeze().cpu().clamp_(min=-1,max=1)*0.5+0.5 final_result = (generated_output.permute(1,2,0)).numpy()*colored_by_ddcolor.mean(axis=(-2,-1)) result_image = Image.fromarray((final_result*255.).astype(np.uint8), mode='RGB') result_image.save("./result.png") ``` 这段程序展示了两种不同风格迁移算法相结合的方式,其中涉及到的数据预处理步骤是为了适应各自模型的要求而设计的。最后保存的结果即为融合后的彩色化效果图像
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孜孜孜孜不倦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值