深度学习之Softmax回归

Softmax介绍

Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 y 可以取两个以上的值。Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字。Softmax回归是有监督的,不过它可以与深度学习/无监督学习方法的结合。

在 logistic 回归中,我们的训练集由 m 个已标记的样本构成:(x(1),y(1)),,(x(m),y(m)) ,其中输入特征x^{(i)} \in \Re^{n+1}。由于 logistic 回归是针对对二分类问题的,因此类标记 y(i)0,1 。假设函数(hypothesis function) 如下:

hθ(x)=11+exp(θTx),

我们将训练模型参数 θ ,使其能够最小化代价函数 :

J(θ)=1m[i=1my(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]

在 softmax回归中,我们解决的是多分类问题, y 可以取 k 个不同的值。因此,对于训练集 (x(1),y(1)),,(x(m),y(m)) ,我们有 y(i)1,2,,k

对于给定的测试输入 x ,我们想用假设函数针对每一个类别j估算出概率值 p(y=j|x) 。因此,我们的假设函数将要输出一个 k 维的向量(向量元素的和为1)来表示这 k 个估计的概率值。 具体地说,我们的假设函数 hθ(x) 形式如下:

hθ(x(i))=p(y(i)=1|x(i);θ)p(y(i)=2|x(i);θ)p(y(i)=k|x(i);θ)=1kj=1eθTjx(i)eθT1x(i)eθT2x(i)eθTkx(i)

其中 θ1,θ2,,θkn+1 是模型的参数。 1kj=1eθTjx(i) 是对概率分布进行归一化,使得所有概率和为 1 。

为了方便起见,我们同样使用符号 θ 来表示全部的模型参数。在实现Softmax回归时,将 θ 用一个 k×(n+1) 的矩阵来表示会很方便,该矩阵是将 θ1,θ2,,θk 按行罗列起来得到的,如下所示:

θ=θT1θT2θTk

代价函数

现在我们来介绍 softmax 回归算法的代价函数。在下面的公式中, 1{} 是指示函数,花括号内是真为1,为假则为0。我们的代价函数为:

J(θ)=1mi=1mj=1k1{y(i)=j}logeθTjx(i)kl=1eθTlx(i)

值得注意的是,上述公式是logistic回归代价函数的推广。logistic回归代价函数可以改为:

J(θ)=1m[i=1m(1y(i))log(1hθ(x(i)))+y(i)loghθ(x(i))]=1mi=1mj=011{y(i)=j}logp(y(i)=j|x(i);θ)

可以看到,Softmax代价函数与logistic 代价函数在形式上非常类似,只是在Softmax损失函数中对类标记的 k 个可能值进行了累加。注意在Softmax回归中将 x 分类为类别 j 的概率为:

p(y(i)=j|x(i);θ)=eθTjx(i)kl=1eθTlx(i)

对于 J(θ) 最小化问题,目前还没有闭式解法。因此,我们使用迭代的优化算法(例如梯度下降法,或 L-BFGS)。经求导,我们得到梯度公式如下:

θjJ(θ)=1mi=1m[x(i)(1{y(i)=j}p(y(i)=j|x(i);θ))]

让我们来回顾一下符号 θj 的含义: θjJ(θ) 本身是一个向量,它的第 l 个元素 J(θ)θjl J(θ) θj 的第 l 个分量的偏导数。

有了上面的偏导数公式以后,我们就可以将它代入到梯度下降法等算法中,来最小化 J(θ)。 在梯度下降法的标准实现中,每一次迭代需要进行如下更新: θj:=θjαθjJ(θ)(j=1,,k)
当实现 softmax 回归算法时, 我们通常会使用上述代价函数的一个改进版本。具体来说,就是加上权重衰减(weight decay)。我们接下来介绍使用它的动机和细节。

Softmax回归模型参数化的特点

Softmax 回归有一个不寻常的特点:它有一个“冗余”的参数集。为了便于阐述这一特点,假设我们从参数向量 θj 中减去了向量 ψ ,这时,每一个 θj 都变成了 θjψ(j=1,,k) 。此时假设函数变成了以下的式子:

p(y(i)=j|x(i);θ)=e(θjψ)Tx(i)kl=1e(θlψ)Tx(i)=eθTjx(i)eψTx(i)kl=1eθTlx(i)eψTx(i)=eθTjx(i)kl=1eθTlx(i).

换句话说,从 θj 中减去 ψ 完全不影响假设函数的预测结果!这表明前面的 softmax 回归模型中存在冗余的参数。换而言之, Softmax 模型被过度参数化了!
进一步说,如果参数 (θ1,θ2,,θk) 是代价函数 (θ) 的极小值点,那么 (θ1ψ,θ2ψ,,θkψ) 同样也是它的极小值点,其中 ψ 可以为任意向量。因此使 J(θ) 最小化的解不是唯一的。(有趣的是,由于 J(θ) 仍然是一个凸函数,因此梯度下降时不会遇到局部最优解的问题。但是 Hessian 矩阵是奇异的/不可逆的,这会直接导致采用牛顿法优化就遇到数值计算的问题)。

注意,当 ψ=θ1 时,我们总是可以将 θ1θ1ψ=0⃗  (即替换为全零向量),并且这种变换不会影响假设函数。因此我们可以去掉参数向量 θ1 (或者其他 θj 中的任意一个)而不影响假设函数。实际上,与其优化全部的 k×(n+1) 个参数 (θ1,θ2,,θk) (其中 θjn+1 ),我们可以令 θ1=0⃗  ,只优化剩余的 (k1)×(n+1) 个参数,这样算法依然能够正常工作。

但在实际应用中,为了使算法实现更简单清楚,往往保留所有参数 (θ1,θ2,,θn) ,而不任意地将某一参数设置为 0。但此时我们需要对代价函数做一个改动:加入权重衰减。权重衰减可以解决 softmax 回归的参数冗余所带来的数值问题。

权重衰减

我们通过添加一个权重衰减惩罚项 λ2ki=1nj=0θ2ij 来修改代价函数,这个衰减项会惩罚过大的参数值,现在我们的代价函数变为:

J(θ)=1mi=1mj=1k1{y(i)=j}logeθTjx(i)kl=1eθTlx(i)+λ2i=1kj=0nθ2ij

有了这个权重衰减项以后 ( λ>0 ),代价函数就变成了严格的凸函数,这样就可以保证得到唯一的解了。 此时的 Hessian矩阵变为可逆矩阵,并且因为 J(θ) 是凸函数,梯度下降法和 L-BFGS 等算法可以保证收敛到全局最优解。

为了使用优化算法,我们需要求得这个新函数 J(θ) 的导数,如下:

θjJ(θ)=1mi=1m[x(i)(1{y(i)=j}p(y(i)=j|x(i);θ))]+λθj

通过最小化 J(θ) ,我们就能实现一个可用的 softmax 回归模型。

Softmax回归与Logistic 回归的关系

当类别数 k=2 时,softmax 回归退化为 logistic 回归。这表明 softmax 回归是 logistic 回归的一般形式。当 k=2 时,softmax 回归的假设函数为:

hθ(x)=1eθT1x+eθT2x(i)[eθT1xeθT2x]

利用softmax回归参数冗余的特点,我们令 ψ=θ1 ,并且从两个参数向量中都减去向量 θ1 ,得到:

h(x)=1e0⃗ Tx+e(θ2θ1)Tx(i)e0⃗ Txe(θ2θ1)Tx=11+e(θ2θ1)Tx(i)e(θ2θ1)Tx1+e(θ2θ1)Tx(i)=11+e(θ2θ1)Tx(i)111+e(θ2θ1)Tx(i)

因此,用 θ 来表示 θ2θ1 ,我们就会发现 softmax 回归器预测其中一个类别的概率为 11+e(θ)Tx(i) ,另一个类别概率的为 111+e(θ)Tx(i) ,这与 logistic回归是一致的。

Softmax 回归 与k 个二元分类器比较

如何选择选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。

注:本文参考Ufldl教程

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值