信息论、熵、决策树

3 篇文章 0 订阅
33 篇文章 0 订阅

http://www.borgelt.net/dtree.html

https://pypi.python.org/pypi/DecisionTree

http://scikit-learn.org/stable/modules/tree.html

http://orange.biolab.si/

For my job, I need to learn the Decision Tree for sths' classification. As we know, the AI, machine learning, especially the classification algorithms, comes it hey day now. Without these, it cost a lot of man-times for the classification jobs. It leads a new world that free not only the works but the professional works' hands.

I have experience of SVM, KNN and Naive Bayes. Now, i try the DT in another domain, and surprisingly, it did a great job. it make it 98.3% accuracy classifying the two category data with more than 40 features. And i randomly made one million lines of data, it make the tree in 700 secs. it did a great job really.

So I get involve with the basic theory of the DT. And I just find that those 4 libraries are basic on C4.5 and make an improvement. But never goes fast. I am seeking a more effective algorithms and let it be more useful.


Besides, in fact i am more likely to write python framework in the coming days. I think the weak AI algorithms nowadays comes its end, and it already successfully solves lots of problems.

I have a waste of my time last week, lots of distinguish communications with other companies. An I find that I should have a master career tomorrow.!~


  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

Zagfai

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值