图像复原-习题

题1

假设我们有一个[0,1]上的均匀分布随机数发生器U(0,1), 请基于它构造指数分布的随机数发生器,推导出随机数生成方程。若我们有一个标准正态分布的随机数发生器N(0,1),请推导出对数正态分布的随机数生成方程。

答:
(1) 指数分布的分布函数CDF为:
F Z ( z ) = { 1 − e − λ z      , x ≥ 0 0                      , x < 0 {F_Z}\left( z \right) = \left\{ \begin{array}{l} 1 - {e^{ - \lambda z}}\;\;,x \ge 0\\ 0\;\;\;\;\;\;\;\;\;\;,x < 0 \end{array} \right. FZ(z)={1eλz,x00,x<0
令w是服从区间(0,1)的均匀分布,
z ≥ 0 z \ge 0 z0时:
1 − e − λ z = w 1 - {e^{ - \lambda z}} = w 1eλz=w
解得 z = − 1 λ ln ⁡ ( 1 − w ) z = - \frac{1}{\lambda }\ln \left( {1 - w} \right) z=λ1ln(1w)
z < 0 z < 0 z<0时: w=0无解
综合得随机数生成方程为: z = − 1 λ ln ⁡ ( 1 − w ) z = - \frac{1}{\lambda }\ln \left( {1 - w} \right) z=λ1ln(1w)

(2) 当随机变量r服从对数正态分布,有: ln ⁡ ( r ) ∼ N ( a , b 2 ) \ln \left( r \right)\sim N\left( {a,{b^2}} \right) ln(r)N(a,b2)
随机变量x服从标准正态分布,有: x ∼ N ( 0 , 1 ) x\sim N\left( {0,1} \right) xN(0,1)
通过变换可得: b x + a ∼ N ( a , b 2 ) bx + a\sim N\left( {a,{b^2}} \right) bx+aN(a,b2)
ln ⁡ ( r ) = b x + a \ln \left( r \right) = bx + a ln(r)=bx+a,解得 r = e b x + a r = {e^{bx + a}} r=ebx+a
所以随机数生成方程为 r = e b N ( 0 , 1 ) + a r = {e^{bN\left( {0,1} \right) + a}} r=ebN(0,1)+a

题2

对于公式

给出的逆谐波滤波回答下列问题:
(a)解释为什么当Q是正值时滤波对去除“胡椒”噪声有效?
(b)解释为什么当Q是负值时滤波对去除“盐”噪声有效?

答:逆谐波滤波公式可变形为:
f ^ ( x , y ) = ∑ ( s , t ) ∈ S x y g ( s , t ) Q + 1 ∑ ( s , t ) ∈ S x y g ( s , t ) Q                        = ∑ ( s , t ) ∈ S x y g ( s , t ) Q g ( s , t ) ∑ ( s , t ) ∈ S x y g ( s , t ) Q                        = ∑ ( s , t ) ∈ S x y g ( s , t ) Q ∑ ( s , t ) ∈ S x y g ( s , t ) Q g ( s , t ) \begin{array}{l} \hat f\left( {x,y} \right) = \frac{{\sum\nolimits_{\left( {s,t} \right) \in {S_{xy}}} {g{{\left( {s,t} \right)}^{Q + 1}}} }}{{\sum\nolimits_{\left( {s,t} \right) \in {S_{xy}}} {g{{\left( {s,t} \right)}^Q}} }}\\ \;\;\;\;\;\;\;\;\;\;\; = \frac{{\sum\nolimits_{\left( {s,t} \right) \in {S_{xy}}} {g{{\left( {s,t} \right)}^Q}g\left( {s,t} \right)} }}{{\sum\nolimits_{\left( {s,t} \right) \in {S_{xy}}} {g{{\left( {s,t} \right)}^Q}} }}\\ \;\;\;\;\;\;\;\;\;\;\; = \sum\nolimits_{\left( {s,t} \right) \in {S_{xy}}} {\frac{{g{{\left( {s,t} \right)}^Q}}}{{\sum\nolimits_{\left( {s,t} \right) \in {S_{xy}}} {g{{\left( {s,t} \right)}^Q}} }}g\left( {s,t} \right)} \end{array} f^(x,y)=(s,t)Sxyg(s,t)Q(s,t)Sxyg(s,t)Q+1=(s,t)Sxyg(s,t)Q(s,t)Sxyg(s,t)Qg(s,t)=(s,t)Sxy(s,t)Sxyg(s,t)Qg(s,t)Qg(s,t)
变形后式子可以理解为对像素得加权求和,权重为 g ( s , t ) Q ∑ ( s , t ) ∈ S x y g ( s , t ) Q \frac{{g{{\left( {s,t} \right)}^Q}}}{{\sum\nolimits_{\left( {s,t} \right) \in {S_{xy}}} {g{{\left( {s,t} \right)}^Q}} }} (s,t)Sxyg(s,t)Qg(s,t)Q
当Q>0时,由于胡椒噪声的灰度值很小,会使权重偏小,这样就可以滤去胡椒噪声;
当Q<0时,由于盐噪声的灰度值很大,会使权值偏小,这样就可以滤去盐噪声。

题3

复习理解课本中最佳陷波滤波器进行图像恢复的过程,请推导出w(x,y)最优解的计算过程,即从公式
∂ σ 2 ( x , y ) ∂ ω ( x , y ) = 0 \frac{{\partial {\sigma ^2}(x,y)}}{{\partial \omega (x,y)}} = 0 ω(x,y)σ2(x,y)=0 ω ( x , y ) = η ( x , y ) g ( x , y ) ‾ − g ‾ ( x , y ) η ‾ ( x , y ) η 2 ‾ ( x , y ) − η ‾ 2 ( x , y ) \omega (x,y) = \frac{{\overline {\eta (x,y)g(x,y)} - \overline g (x,y)\overline \eta (x,y)}}{{\overline {{\eta ^2}} (x,y) - {{\overline \eta }^2}(x,y)}} ω(x,y)=η2(x,y)η2(x,y)η(x,y)g(x,y)g(x,y)η(x,y)的推导过程。

答:已知 σ 2 ( x , y ) = 1 ( 2 a + 1 ) ( 2 b + 1 ) ∑ s = − a a ∑ t = − b b { [ g ( x + s , y + t ) − w ( x , y ) η ( x + s , y + t ) ] − [ g ˉ ( x , y ) − w ( x , y ) η ˉ ( x , y ) ] } 2                            = 1 ( 2 a + 1 ) ( 2 b + 1 ) ∑ s = − a a ∑ t = − b b { g ( x + s , y + t ) − g ˉ ( x , y ) − w ( x , y ) [ η ( x + s , y + t ) − η ˉ ( x , y ) ] } 2 \begin{array}{l} {\sigma ^2}\left( {x,y} \right) = \frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {{{\left\{ {\left[ {g\left( {x + s,y + t} \right) - w\left( {x,y} \right)\eta \left( {x + s,y + t} \right)} \right] - \left[ {\bar g\left( {x,y} \right) - w\left( {x,y} \right)\bar \eta \left( {x,y} \right)} \right]} \right\}}^2}} } \\ \;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {{{\left\{ {g\left( {x + s,y + t} \right) - \bar g\left( {x,y} \right) - w\left( {x,y} \right)\left[ {\eta \left( {x + s,y + t} \right) - \bar \eta \left( {x,y} \right)} \right]} \right\}}^2}} } \end{array} σ2(x,y)=(2a+1)(2b+1)1s=aat=bb{[g(x+s,y+t)w(x,y)η(x+s,y+t)][gˉ(x,y)w(x,y)ηˉ(x,y)]}2=(2a+1)(2b+1)1s=aat=bb{g(x+s,y+t)gˉ(x,y)w(x,y)[η(x+s,y+t)ηˉ(x,y)]}2
∂ σ 2 ( x , y ) ∂ w ( x , y ) = ∂ ∂ w ( x , y ) 1 ( 2 a + 1 ) ( 2 b + 1 ) ∑ s = − a a ∑ t = − b b { g ( x + s , y + t ) − g ˉ ( x , y ) − w ( x , y ) [ η ( x + s , y + t ) − η ˉ ( x , y ) ] } 2                                = 1 ( 2 a + 1 ) ( 2 b + 1 ) ∑ s = − a a ∑ t = − b b 2 { g ( x + s , y + t ) − g ˉ ( x , y ) − w ( x , y ) [ η ( x + s , y + t ) − η ˉ ( x , y ) ] } [ η ( x + s , y + t ) − η ˉ ( x , y ) ] \begin{array}{l} \frac{{\partial {\sigma ^2}\left( {x,y} \right)}}{{\partial w\left( {x,y} \right)}} = \frac{\partial }{{\partial w\left( {x,y} \right)}}\frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {{{\left\{ {g\left( {x + s,y + t} \right) - \bar g\left( {x,y} \right) - w\left( {x,y} \right)\left[ {\eta \left( {x + s,y + t} \right) - \bar \eta \left( {x,y} \right)} \right]} \right\}}^2}} } \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {2\left\{ {g\left( {x + s,y + t} \right) - \bar g\left( {x,y} \right) - w\left( {x,y} \right)\left[ {\eta \left( {x + s,y + t} \right) - \bar \eta \left( {x,y} \right)} \right]} \right\}\left[ {\eta \left( {x + s,y + t} \right) - \bar \eta \left( {x,y} \right)} \right]} } \end{array} w(x,y)σ2(x,y)=w(x,y)(2a+1)(2b+1)1s=aat=bb{g(x+s,y+t)gˉ(x,y)w(x,y)[η(x+s,y+t)ηˉ(x,y)]}2=(2a+1)(2b+1)1s=aat=bb2{g(x+s,y+t)gˉ(x,y)w(x,y)[η(x+s,y+t)ηˉ(x,y)]}[η(x+s,y+t)ηˉ(x,y)]
∂ σ 2 ( x , y ) ∂ w ( x , y ) = 0 \frac{{\partial {\sigma ^2}\left( {x,y} \right)}}{{\partial w\left( {x,y} \right)}} = 0 w(x,y)σ2(x,y)=0,得:
1 ( 2 a + 1 ) ( 2 b + 1 ) ∑ s = − a a ∑ t = − b b 2 { g ( x + s , y + t ) − g ˉ ( x , y ) − w ( x , y ) [ η ( x + s , y + t ) − η ˉ ( x , y ) ] } [ η ( x + s , y + t ) − η ˉ ( x , y ) ] = 0 \frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {2\left\{ {g\left( {x + s,y + t} \right) - \bar g\left( {x,y} \right) - w\left( {x,y} \right)\left[ {\eta \left( {x + s,y + t} \right) - \bar \eta \left( {x,y} \right)} \right]} \right\}\left[ {\eta \left( {x + s,y + t} \right) - \bar \eta \left( {x,y} \right)} \right]} } = 0 (2a+1)(2b+1)1s=aat=bb2{g(x+s,y+t)gˉ(x,y)w(x,y)[η(x+s,y+t)ηˉ(x,y)]}[η(x+s,y+t)ηˉ(x,y)]=0
整理得:
w ( x , y ) = ∑ s = − a a ∑ t = − b b [ g ( x + s , y + t ) − g ˉ ( x , y ) ] [ η ( x + s , y + t ) − η ˉ ( x , y ) ] ∑ s = − a a ∑ t = − b b [ η ( x + s , y + t ) − η ˉ ( x , y ) ] 2                        = ∑ s = − a a ∑ t = − b b [ g ( x + s , y + t ) η ( x + s , y + t ) − g ( x + s , y + t ) η ˉ ( x , y ) − g ˉ ( x , y ) η ( x + s , y + t ) + g ˉ ( x , y ) η ˉ ( x , y ) ] ∑ s = − a a ∑ t = − b b [ η ( x + s , y + t ) 2 + η ˉ ( x , y ) 2 − 2 η ( x + s , y + t ) η ˉ ( x , y ) ] 2 \begin{array}{l} w\left( {x,y} \right) = \frac{{\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {\left[ {g\left( {x + s,y + t} \right) - \bar g\left( {x,y} \right)} \right]\left[ {\eta \left( {x + s,y + t} \right) - \bar \eta \left( {x,y} \right)} \right]} } }}{{\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {{{\left[ {\eta \left( {x + s,y + t} \right) - \bar \eta \left( {x,y} \right)} \right]}^2}} } }}\\ \;\;\;\;\;\;\;\;\;\;\; = \frac{{\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {\left[ {g\left( {x + s,y + t} \right)\eta \left( {x + s,y + t} \right) - g\left( {x + s,y + t} \right)\bar \eta \left( {x,y} \right) - \bar g\left( {x,y} \right)\eta \left( {x + s,y + t} \right) + \bar g\left( {x,y} \right)\bar \eta \left( {x,y} \right)} \right]} } }}{{\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {{{\left[ {\eta {{\left( {x + s,y + t} \right)}^2} + \bar \eta {{\left( {x,y} \right)}^2} - 2\eta \left( {x + s,y + t} \right)\bar \eta \left( {x,y} \right)} \right]}^2}} } }} \end{array} w(x,y)=s=aat=bb[η(x+s,y+t)ηˉ(x,y)]2s=aat=bb[g(x+s,y+t)gˉ(x,y)][η(x+s,y+t)ηˉ(x,y)]=s=aat=bb[η(x+s,y+t)2+ηˉ(x,y)22η(x+s,y+t)ηˉ(x,y)]2s=aat=bb[g(x+s,y+t)η(x+s,y+t)g(x+s,y+t)ηˉ(x,y)gˉ(x,y)η(x+s,y+t)+gˉ(x,y)ηˉ(x,y)]
由于
1 ( 2 a + 1 ) ( 2 b + 1 ) ∑ s = − a a ∑ t = − b b g ( x + s , y + t ) = 1 ( 2 a + 1 ) ( 2 b + 1 ) ∑ s = − a a ∑ t = − b b g ˉ ( x , y ) = g ˉ ( x , y ) \frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {g\left( {x + s,y + t} \right)} } = \frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {\bar g\left( {x,y} \right)} } = \bar g\left( {x,y} \right) (2a+1)(2b+1)1s=aat=bbg(x+s,y+t)=(2a+1)(2b+1)1s=aat=bbgˉ(x,y)=gˉ(x,y)
1 ( 2 a + 1 ) ( 2 b + 1 ) ∑ s = − a a ∑ t = − b b η ( x + s , y + t ) = 1 ( 2 a + 1 ) ( 2 b + 1 ) ∑ s = − a a ∑ t = − b b η ˉ ( x , y ) = η ˉ ( x , y ) \frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {\eta \left( {x + s,y + t} \right)} } = \frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {\bar \eta \left( {x,y} \right)} } = \bar \eta \left( {x,y} \right) (2a+1)(2b+1)1s=aat=bbη(x+s,y+t)=(2a+1)(2b+1)1s=aat=bbηˉ(x,y)=ηˉ(x,y)

w ( x , y ) = g ( x + s , y + t ) η ( x + s , y + t ) ‾ − g ˉ ( x , y ) η ( x + s , y + t ) − g ( x + s , y + t ) η ˉ ( x , y ) + g ˉ ( x , y ) η ˉ ( x , y ) η ˉ 2 ( x , y ) − 2 η ˉ 2 ( x , y ) + η 2 ( x + s , y + t )                        = η ( x , y ) g ( x , y ) ‾ − g ‾ ( x , y ) η ‾ ( x , y ) η 2 ‾ ( x , y ) − η ‾ 2 ( x , y ) \begin{array}{l} w\left( {x,y} \right) = \frac{{\overline {g\left( {x + s,y + t} \right)\eta \left( {x + s,y + t} \right)} - \bar g\left( {x,y} \right)\eta \left( {x + s,y + t} \right) - g\left( {x + s,y + t} \right)\bar \eta \left( {x,y} \right) + \bar g\left( {x,y} \right)\bar \eta \left( {x,y} \right)}}{{{{\bar \eta }^2}\left( {x,y} \right) - 2{{\bar \eta }^2}\left( {x,y} \right) + {\eta ^2}\left( {x + s,y + t} \right)}}\\ \;\;\;\;\;\;\;\;\;\;\; = \frac{{\overline {\eta (x,y)g(x,y)} - \overline g (x,y)\overline \eta (x,y)}}{{\overline {{\eta ^2}} (x,y) - {{\overline \eta }^2}(x,y)}} \end{array} w(x,y)=ηˉ2(x,y)2ηˉ2(x,y)+η2(x+s,y+t)g(x+s,y+t)η(x+s,y+t)gˉ(x,y)η(x+s,y+t)g(x+s,y+t)ηˉ(x,y)+gˉ(x,y)ηˉ(x,y)=η2(x,y)η2(x,y)η(x,y)g(x,y)g(x,y)η(x,y)

题4

考虑在x方向均匀加速导致的图像模糊问题。如果图像在t = 0静止,并用均匀加速 x 0 ( t ) = a t 2 / 2 {x_0}\left( t \right) = a{t^2}/2 x0(t)=at2/2加速,对于时间T, 找出模糊函数H(u, v), 可以假设快门开关时间忽略不计。

答:模糊函数为 H ( u , v ) = ∫ 0 T e − j 2 π ( u x 0 ( t ) , v y 0 ( t ) ) d t H\left( {u,v} \right) = \int_0^T {{e^{ - j2\pi \left( {u{x_0}\left( t \right),v{y_0}\left( t \right)} \right)}}dt} H(u,v)=0Tej2π(ux0(t),vy0(t))dt
带入 x 0 ( t ) = a t 2 / 2 {x_0}\left( t \right) = a{t^2}/2 x0(t)=at2/2 y 0 ( t ) = 0 {y_0}\left( t \right) = 0 y0(t)=0
H ( u , v ) = ∫ 0 T e − j 2 π u a t 2 d t H\left( {u,v} \right) = \int_0^T {{e^{ - j2\pi ua{t^2}}}dt} H(u,v)=0Tej2πuat2dt

题5

已知一个退化系统的退化函数H(u,v), 以及噪声的均值与方差,请描述如何利用约束最小二乘方算法计算出原图像的估计。

答:
在频域中原图像得估计为:(1)
F ^ ( u , v ) = [ H ∗ ( u , v ) ∣ H ( u , v ) ∣ 2 + γ ∣ P ( u , v ) ∣ 2 ] G ( u , v ) \hat F\left( {u,v} \right) = \left[ {\frac{{{H^*}\left( {u,v} \right)}}{{{{\left| {H\left( {u,v} \right)} \right|}^2} + \gamma {{\left| {P\left( {u,v} \right)} \right|}^2}}}} \right]G\left( {u,v} \right) F^(u,v)=[H(u,v)2+γP(u,v)2H(u,v)]G(u,v)
定义残差向量:(2)
r = g − H f ^ r = g - H\hat f r=gHf^
由公式(1)可知 F ^ ( u , v ) \hat F\left( {u,v} \right) F^(u,v)和r是 γ \gamma γ的函数,已知r的欧氏距离是 γ \gamma γ的单调递增函数。
接下来需要调整 γ \gamma γ,使得(3)
∥ r 2 ∥ = ∥ η ∥ 2 ± a \left\| {{r^2}} \right\| = {\left\| \eta \right\|^2} \pm a r2=η2±a
上式中,a是精度确定因子,确定 γ \gamma γ的方法为:
1、 指定 γ \gamma γ的初始值
2、 计算 ∥ r 2 ∥ \left\| {{r^2}} \right\| r2
3、 若结果满足公式(3),则迭代结束;否则如果 ∥ r 2 ∥ < ∥ η ∥ 2 − a \left\| {{r^2}} \right\| < {\left\| \eta \right\|^2} - a r2<η2a,则增大 γ \gamma γ,如果 ∥ r 2 ∥ > ∥ η ∥ 2 + a \left\| {{r^2}} \right\| > {\left\| \eta \right\|^2} + a r2>η2+a则减小 γ \gamma γ,返回步骤2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值