题1
假设我们有一个[0,1]上的均匀分布随机数发生器U(0,1), 请基于它构造指数分布的随机数发生器,推导出随机数生成方程。若我们有一个标准正态分布的随机数发生器N(0,1),请推导出对数正态分布的随机数生成方程。
答:
(1) 指数分布的分布函数CDF为:
F
Z
(
z
)
=
{
1
−
e
−
λ
z
,
x
≥
0
0
,
x
<
0
{F_Z}\left( z \right) = \left\{ \begin{array}{l} 1 - {e^{ - \lambda z}}\;\;,x \ge 0\\ 0\;\;\;\;\;\;\;\;\;\;,x < 0 \end{array} \right.
FZ(z)={1−e−λz,x≥00,x<0
令w是服从区间(0,1)的均匀分布,
当
z
≥
0
z \ge 0
z≥0时:
1
−
e
−
λ
z
=
w
1 - {e^{ - \lambda z}} = w
1−e−λz=w
解得
z
=
−
1
λ
ln
(
1
−
w
)
z = - \frac{1}{\lambda }\ln \left( {1 - w} \right)
z=−λ1ln(1−w)
当
z
<
0
z < 0
z<0时: w=0无解
综合得随机数生成方程为:
z
=
−
1
λ
ln
(
1
−
w
)
z = - \frac{1}{\lambda }\ln \left( {1 - w} \right)
z=−λ1ln(1−w)
(2) 当随机变量r服从对数正态分布,有:
ln
(
r
)
∼
N
(
a
,
b
2
)
\ln \left( r \right)\sim N\left( {a,{b^2}} \right)
ln(r)∼N(a,b2)
随机变量x服从标准正态分布,有:
x
∼
N
(
0
,
1
)
x\sim N\left( {0,1} \right)
x∼N(0,1)
通过变换可得:
b
x
+
a
∼
N
(
a
,
b
2
)
bx + a\sim N\left( {a,{b^2}} \right)
bx+a∼N(a,b2)
令
ln
(
r
)
=
b
x
+
a
\ln \left( r \right) = bx + a
ln(r)=bx+a,解得
r
=
e
b
x
+
a
r = {e^{bx + a}}
r=ebx+a
所以随机数生成方程为
r
=
e
b
N
(
0
,
1
)
+
a
r = {e^{bN\left( {0,1} \right) + a}}
r=ebN(0,1)+a
题2
对于公式
给出的逆谐波滤波回答下列问题:
(a)解释为什么当Q是正值时滤波对去除“胡椒”噪声有效?
(b)解释为什么当Q是负值时滤波对去除“盐”噪声有效?
答:逆谐波滤波公式可变形为:
f
^
(
x
,
y
)
=
∑
(
s
,
t
)
∈
S
x
y
g
(
s
,
t
)
Q
+
1
∑
(
s
,
t
)
∈
S
x
y
g
(
s
,
t
)
Q
=
∑
(
s
,
t
)
∈
S
x
y
g
(
s
,
t
)
Q
g
(
s
,
t
)
∑
(
s
,
t
)
∈
S
x
y
g
(
s
,
t
)
Q
=
∑
(
s
,
t
)
∈
S
x
y
g
(
s
,
t
)
Q
∑
(
s
,
t
)
∈
S
x
y
g
(
s
,
t
)
Q
g
(
s
,
t
)
\begin{array}{l} \hat f\left( {x,y} \right) = \frac{{\sum\nolimits_{\left( {s,t} \right) \in {S_{xy}}} {g{{\left( {s,t} \right)}^{Q + 1}}} }}{{\sum\nolimits_{\left( {s,t} \right) \in {S_{xy}}} {g{{\left( {s,t} \right)}^Q}} }}\\ \;\;\;\;\;\;\;\;\;\;\; = \frac{{\sum\nolimits_{\left( {s,t} \right) \in {S_{xy}}} {g{{\left( {s,t} \right)}^Q}g\left( {s,t} \right)} }}{{\sum\nolimits_{\left( {s,t} \right) \in {S_{xy}}} {g{{\left( {s,t} \right)}^Q}} }}\\ \;\;\;\;\;\;\;\;\;\;\; = \sum\nolimits_{\left( {s,t} \right) \in {S_{xy}}} {\frac{{g{{\left( {s,t} \right)}^Q}}}{{\sum\nolimits_{\left( {s,t} \right) \in {S_{xy}}} {g{{\left( {s,t} \right)}^Q}} }}g\left( {s,t} \right)} \end{array}
f^(x,y)=∑(s,t)∈Sxyg(s,t)Q∑(s,t)∈Sxyg(s,t)Q+1=∑(s,t)∈Sxyg(s,t)Q∑(s,t)∈Sxyg(s,t)Qg(s,t)=∑(s,t)∈Sxy∑(s,t)∈Sxyg(s,t)Qg(s,t)Qg(s,t)
变形后式子可以理解为对像素得加权求和,权重为
g
(
s
,
t
)
Q
∑
(
s
,
t
)
∈
S
x
y
g
(
s
,
t
)
Q
\frac{{g{{\left( {s,t} \right)}^Q}}}{{\sum\nolimits_{\left( {s,t} \right) \in {S_{xy}}} {g{{\left( {s,t} \right)}^Q}} }}
∑(s,t)∈Sxyg(s,t)Qg(s,t)Q
当Q>0时,由于胡椒噪声的灰度值很小,会使权重偏小,这样就可以滤去胡椒噪声;
当Q<0时,由于盐噪声的灰度值很大,会使权值偏小,这样就可以滤去盐噪声。
题3
复习理解课本中最佳陷波滤波器进行图像恢复的过程,请推导出w(x,y)最优解的计算过程,即从公式
∂
σ
2
(
x
,
y
)
∂
ω
(
x
,
y
)
=
0
\frac{{\partial {\sigma ^2}(x,y)}}{{\partial \omega (x,y)}} = 0
∂ω(x,y)∂σ2(x,y)=0到
ω
(
x
,
y
)
=
η
(
x
,
y
)
g
(
x
,
y
)
‾
−
g
‾
(
x
,
y
)
η
‾
(
x
,
y
)
η
2
‾
(
x
,
y
)
−
η
‾
2
(
x
,
y
)
\omega (x,y) = \frac{{\overline {\eta (x,y)g(x,y)} - \overline g (x,y)\overline \eta (x,y)}}{{\overline {{\eta ^2}} (x,y) - {{\overline \eta }^2}(x,y)}}
ω(x,y)=η2(x,y)−η2(x,y)η(x,y)g(x,y)−g(x,y)η(x,y)的推导过程。
答:已知
σ
2
(
x
,
y
)
=
1
(
2
a
+
1
)
(
2
b
+
1
)
∑
s
=
−
a
a
∑
t
=
−
b
b
{
[
g
(
x
+
s
,
y
+
t
)
−
w
(
x
,
y
)
η
(
x
+
s
,
y
+
t
)
]
−
[
g
ˉ
(
x
,
y
)
−
w
(
x
,
y
)
η
ˉ
(
x
,
y
)
]
}
2
=
1
(
2
a
+
1
)
(
2
b
+
1
)
∑
s
=
−
a
a
∑
t
=
−
b
b
{
g
(
x
+
s
,
y
+
t
)
−
g
ˉ
(
x
,
y
)
−
w
(
x
,
y
)
[
η
(
x
+
s
,
y
+
t
)
−
η
ˉ
(
x
,
y
)
]
}
2
\begin{array}{l} {\sigma ^2}\left( {x,y} \right) = \frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {{{\left\{ {\left[ {g\left( {x + s,y + t} \right) - w\left( {x,y} \right)\eta \left( {x + s,y + t} \right)} \right] - \left[ {\bar g\left( {x,y} \right) - w\left( {x,y} \right)\bar \eta \left( {x,y} \right)} \right]} \right\}}^2}} } \\ \;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {{{\left\{ {g\left( {x + s,y + t} \right) - \bar g\left( {x,y} \right) - w\left( {x,y} \right)\left[ {\eta \left( {x + s,y + t} \right) - \bar \eta \left( {x,y} \right)} \right]} \right\}}^2}} } \end{array}
σ2(x,y)=(2a+1)(2b+1)1s=−a∑at=−b∑b{[g(x+s,y+t)−w(x,y)η(x+s,y+t)]−[gˉ(x,y)−w(x,y)ηˉ(x,y)]}2=(2a+1)(2b+1)1s=−a∑at=−b∑b{g(x+s,y+t)−gˉ(x,y)−w(x,y)[η(x+s,y+t)−ηˉ(x,y)]}2则
∂
σ
2
(
x
,
y
)
∂
w
(
x
,
y
)
=
∂
∂
w
(
x
,
y
)
1
(
2
a
+
1
)
(
2
b
+
1
)
∑
s
=
−
a
a
∑
t
=
−
b
b
{
g
(
x
+
s
,
y
+
t
)
−
g
ˉ
(
x
,
y
)
−
w
(
x
,
y
)
[
η
(
x
+
s
,
y
+
t
)
−
η
ˉ
(
x
,
y
)
]
}
2
=
1
(
2
a
+
1
)
(
2
b
+
1
)
∑
s
=
−
a
a
∑
t
=
−
b
b
2
{
g
(
x
+
s
,
y
+
t
)
−
g
ˉ
(
x
,
y
)
−
w
(
x
,
y
)
[
η
(
x
+
s
,
y
+
t
)
−
η
ˉ
(
x
,
y
)
]
}
[
η
(
x
+
s
,
y
+
t
)
−
η
ˉ
(
x
,
y
)
]
\begin{array}{l} \frac{{\partial {\sigma ^2}\left( {x,y} \right)}}{{\partial w\left( {x,y} \right)}} = \frac{\partial }{{\partial w\left( {x,y} \right)}}\frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {{{\left\{ {g\left( {x + s,y + t} \right) - \bar g\left( {x,y} \right) - w\left( {x,y} \right)\left[ {\eta \left( {x + s,y + t} \right) - \bar \eta \left( {x,y} \right)} \right]} \right\}}^2}} } \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {2\left\{ {g\left( {x + s,y + t} \right) - \bar g\left( {x,y} \right) - w\left( {x,y} \right)\left[ {\eta \left( {x + s,y + t} \right) - \bar \eta \left( {x,y} \right)} \right]} \right\}\left[ {\eta \left( {x + s,y + t} \right) - \bar \eta \left( {x,y} \right)} \right]} } \end{array}
∂w(x,y)∂σ2(x,y)=∂w(x,y)∂(2a+1)(2b+1)1s=−a∑at=−b∑b{g(x+s,y+t)−gˉ(x,y)−w(x,y)[η(x+s,y+t)−ηˉ(x,y)]}2=(2a+1)(2b+1)1s=−a∑at=−b∑b2{g(x+s,y+t)−gˉ(x,y)−w(x,y)[η(x+s,y+t)−ηˉ(x,y)]}[η(x+s,y+t)−ηˉ(x,y)]
由
∂
σ
2
(
x
,
y
)
∂
w
(
x
,
y
)
=
0
\frac{{\partial {\sigma ^2}\left( {x,y} \right)}}{{\partial w\left( {x,y} \right)}} = 0
∂w(x,y)∂σ2(x,y)=0,得:
1
(
2
a
+
1
)
(
2
b
+
1
)
∑
s
=
−
a
a
∑
t
=
−
b
b
2
{
g
(
x
+
s
,
y
+
t
)
−
g
ˉ
(
x
,
y
)
−
w
(
x
,
y
)
[
η
(
x
+
s
,
y
+
t
)
−
η
ˉ
(
x
,
y
)
]
}
[
η
(
x
+
s
,
y
+
t
)
−
η
ˉ
(
x
,
y
)
]
=
0
\frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {2\left\{ {g\left( {x + s,y + t} \right) - \bar g\left( {x,y} \right) - w\left( {x,y} \right)\left[ {\eta \left( {x + s,y + t} \right) - \bar \eta \left( {x,y} \right)} \right]} \right\}\left[ {\eta \left( {x + s,y + t} \right) - \bar \eta \left( {x,y} \right)} \right]} } = 0
(2a+1)(2b+1)1s=−a∑at=−b∑b2{g(x+s,y+t)−gˉ(x,y)−w(x,y)[η(x+s,y+t)−ηˉ(x,y)]}[η(x+s,y+t)−ηˉ(x,y)]=0
整理得:
w
(
x
,
y
)
=
∑
s
=
−
a
a
∑
t
=
−
b
b
[
g
(
x
+
s
,
y
+
t
)
−
g
ˉ
(
x
,
y
)
]
[
η
(
x
+
s
,
y
+
t
)
−
η
ˉ
(
x
,
y
)
]
∑
s
=
−
a
a
∑
t
=
−
b
b
[
η
(
x
+
s
,
y
+
t
)
−
η
ˉ
(
x
,
y
)
]
2
=
∑
s
=
−
a
a
∑
t
=
−
b
b
[
g
(
x
+
s
,
y
+
t
)
η
(
x
+
s
,
y
+
t
)
−
g
(
x
+
s
,
y
+
t
)
η
ˉ
(
x
,
y
)
−
g
ˉ
(
x
,
y
)
η
(
x
+
s
,
y
+
t
)
+
g
ˉ
(
x
,
y
)
η
ˉ
(
x
,
y
)
]
∑
s
=
−
a
a
∑
t
=
−
b
b
[
η
(
x
+
s
,
y
+
t
)
2
+
η
ˉ
(
x
,
y
)
2
−
2
η
(
x
+
s
,
y
+
t
)
η
ˉ
(
x
,
y
)
]
2
\begin{array}{l} w\left( {x,y} \right) = \frac{{\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {\left[ {g\left( {x + s,y + t} \right) - \bar g\left( {x,y} \right)} \right]\left[ {\eta \left( {x + s,y + t} \right) - \bar \eta \left( {x,y} \right)} \right]} } }}{{\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {{{\left[ {\eta \left( {x + s,y + t} \right) - \bar \eta \left( {x,y} \right)} \right]}^2}} } }}\\ \;\;\;\;\;\;\;\;\;\;\; = \frac{{\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {\left[ {g\left( {x + s,y + t} \right)\eta \left( {x + s,y + t} \right) - g\left( {x + s,y + t} \right)\bar \eta \left( {x,y} \right) - \bar g\left( {x,y} \right)\eta \left( {x + s,y + t} \right) + \bar g\left( {x,y} \right)\bar \eta \left( {x,y} \right)} \right]} } }}{{\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {{{\left[ {\eta {{\left( {x + s,y + t} \right)}^2} + \bar \eta {{\left( {x,y} \right)}^2} - 2\eta \left( {x + s,y + t} \right)\bar \eta \left( {x,y} \right)} \right]}^2}} } }} \end{array}
w(x,y)=s=−a∑at=−b∑b[η(x+s,y+t)−ηˉ(x,y)]2s=−a∑at=−b∑b[g(x+s,y+t)−gˉ(x,y)][η(x+s,y+t)−ηˉ(x,y)]=s=−a∑at=−b∑b[η(x+s,y+t)2+ηˉ(x,y)2−2η(x+s,y+t)ηˉ(x,y)]2s=−a∑at=−b∑b[g(x+s,y+t)η(x+s,y+t)−g(x+s,y+t)ηˉ(x,y)−gˉ(x,y)η(x+s,y+t)+gˉ(x,y)ηˉ(x,y)]
由于
1
(
2
a
+
1
)
(
2
b
+
1
)
∑
s
=
−
a
a
∑
t
=
−
b
b
g
(
x
+
s
,
y
+
t
)
=
1
(
2
a
+
1
)
(
2
b
+
1
)
∑
s
=
−
a
a
∑
t
=
−
b
b
g
ˉ
(
x
,
y
)
=
g
ˉ
(
x
,
y
)
\frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {g\left( {x + s,y + t} \right)} } = \frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {\bar g\left( {x,y} \right)} } = \bar g\left( {x,y} \right)
(2a+1)(2b+1)1s=−a∑at=−b∑bg(x+s,y+t)=(2a+1)(2b+1)1s=−a∑at=−b∑bgˉ(x,y)=gˉ(x,y)
1
(
2
a
+
1
)
(
2
b
+
1
)
∑
s
=
−
a
a
∑
t
=
−
b
b
η
(
x
+
s
,
y
+
t
)
=
1
(
2
a
+
1
)
(
2
b
+
1
)
∑
s
=
−
a
a
∑
t
=
−
b
b
η
ˉ
(
x
,
y
)
=
η
ˉ
(
x
,
y
)
\frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {\eta \left( {x + s,y + t} \right)} } = \frac{1}{{\left( {2a + 1} \right)\left( {2b + 1} \right)}}\sum\limits_{s = - a}^a {\sum\limits_{t = - b}^b {\bar \eta \left( {x,y} \right)} } = \bar \eta \left( {x,y} \right)
(2a+1)(2b+1)1s=−a∑at=−b∑bη(x+s,y+t)=(2a+1)(2b+1)1s=−a∑at=−b∑bηˉ(x,y)=ηˉ(x,y)
得
w
(
x
,
y
)
=
g
(
x
+
s
,
y
+
t
)
η
(
x
+
s
,
y
+
t
)
‾
−
g
ˉ
(
x
,
y
)
η
(
x
+
s
,
y
+
t
)
−
g
(
x
+
s
,
y
+
t
)
η
ˉ
(
x
,
y
)
+
g
ˉ
(
x
,
y
)
η
ˉ
(
x
,
y
)
η
ˉ
2
(
x
,
y
)
−
2
η
ˉ
2
(
x
,
y
)
+
η
2
(
x
+
s
,
y
+
t
)
=
η
(
x
,
y
)
g
(
x
,
y
)
‾
−
g
‾
(
x
,
y
)
η
‾
(
x
,
y
)
η
2
‾
(
x
,
y
)
−
η
‾
2
(
x
,
y
)
\begin{array}{l} w\left( {x,y} \right) = \frac{{\overline {g\left( {x + s,y + t} \right)\eta \left( {x + s,y + t} \right)} - \bar g\left( {x,y} \right)\eta \left( {x + s,y + t} \right) - g\left( {x + s,y + t} \right)\bar \eta \left( {x,y} \right) + \bar g\left( {x,y} \right)\bar \eta \left( {x,y} \right)}}{{{{\bar \eta }^2}\left( {x,y} \right) - 2{{\bar \eta }^2}\left( {x,y} \right) + {\eta ^2}\left( {x + s,y + t} \right)}}\\ \;\;\;\;\;\;\;\;\;\;\; = \frac{{\overline {\eta (x,y)g(x,y)} - \overline g (x,y)\overline \eta (x,y)}}{{\overline {{\eta ^2}} (x,y) - {{\overline \eta }^2}(x,y)}} \end{array}
w(x,y)=ηˉ2(x,y)−2ηˉ2(x,y)+η2(x+s,y+t)g(x+s,y+t)η(x+s,y+t)−gˉ(x,y)η(x+s,y+t)−g(x+s,y+t)ηˉ(x,y)+gˉ(x,y)ηˉ(x,y)=η2(x,y)−η2(x,y)η(x,y)g(x,y)−g(x,y)η(x,y)
题4
考虑在x方向均匀加速导致的图像模糊问题。如果图像在t = 0静止,并用均匀加速 x 0 ( t ) = a t 2 / 2 {x_0}\left( t \right) = a{t^2}/2 x0(t)=at2/2加速,对于时间T, 找出模糊函数H(u, v), 可以假设快门开关时间忽略不计。
答:模糊函数为
H
(
u
,
v
)
=
∫
0
T
e
−
j
2
π
(
u
x
0
(
t
)
,
v
y
0
(
t
)
)
d
t
H\left( {u,v} \right) = \int_0^T {{e^{ - j2\pi \left( {u{x_0}\left( t \right),v{y_0}\left( t \right)} \right)}}dt}
H(u,v)=∫0Te−j2π(ux0(t),vy0(t))dt
带入
x
0
(
t
)
=
a
t
2
/
2
{x_0}\left( t \right) = a{t^2}/2
x0(t)=at2/2 和
y
0
(
t
)
=
0
{y_0}\left( t \right) = 0
y0(t)=0,
得
H
(
u
,
v
)
=
∫
0
T
e
−
j
2
π
u
a
t
2
d
t
H\left( {u,v} \right) = \int_0^T {{e^{ - j2\pi ua{t^2}}}dt}
H(u,v)=∫0Te−j2πuat2dt
题5
已知一个退化系统的退化函数H(u,v), 以及噪声的均值与方差,请描述如何利用约束最小二乘方算法计算出原图像的估计。
答:
在频域中原图像得估计为:(1)
F
^
(
u
,
v
)
=
[
H
∗
(
u
,
v
)
∣
H
(
u
,
v
)
∣
2
+
γ
∣
P
(
u
,
v
)
∣
2
]
G
(
u
,
v
)
\hat F\left( {u,v} \right) = \left[ {\frac{{{H^*}\left( {u,v} \right)}}{{{{\left| {H\left( {u,v} \right)} \right|}^2} + \gamma {{\left| {P\left( {u,v} \right)} \right|}^2}}}} \right]G\left( {u,v} \right)
F^(u,v)=[∣H(u,v)∣2+γ∣P(u,v)∣2H∗(u,v)]G(u,v)
定义残差向量:(2)
r
=
g
−
H
f
^
r = g - H\hat f
r=g−Hf^
由公式(1)可知
F
^
(
u
,
v
)
\hat F\left( {u,v} \right)
F^(u,v)和r是
γ
\gamma
γ的函数,已知r的欧氏距离是
γ
\gamma
γ的单调递增函数。
接下来需要调整
γ
\gamma
γ,使得(3)
∥
r
2
∥
=
∥
η
∥
2
±
a
\left\| {{r^2}} \right\| = {\left\| \eta \right\|^2} \pm a
∥∥r2∥∥=∥η∥2±a
上式中,a是精度确定因子,确定
γ
\gamma
γ的方法为:
1、 指定
γ
\gamma
γ的初始值
2、 计算
∥
r
2
∥
\left\| {{r^2}} \right\|
∥∥r2∥∥
3、 若结果满足公式(3),则迭代结束;否则如果
∥
r
2
∥
<
∥
η
∥
2
−
a
\left\| {{r^2}} \right\| < {\left\| \eta \right\|^2} - a
∥∥r2∥∥<∥η∥2−a,则增大
γ
\gamma
γ,如果
∥
r
2
∥
>
∥
η
∥
2
+
a
\left\| {{r^2}} \right\| > {\left\| \eta \right\|^2} + a
∥∥r2∥∥>∥η∥2+a则减小
γ
\gamma
γ,返回步骤2