灰度变换-习题

题1

(a)试求出实现示于下图的对比度展宽变换的连续函数。此函数不仅包含参数m,而且还包括参数E,以便于控制灰度值由低向高转化时的函数斜率。该函数应归一化,以使它的最小值和最大值分别为0和1
在这里插入图片描述
答:
s = T ( r ) = 1 1 + ( m / r ) E s = T\left( r \right) = \frac{1}{{1 + {{\left( {m/r} \right)}^E}}} s=T(r)=1+(m/r)E1
(b)作为参数E的函数,设计一组变换,m值固定为L/2,L是图像中灰度的级数
答:
在这里插入图片描述

题2

一幅8灰度级图像具有如下所示的直方图,求直方图均衡后的灰度级和对应概率,并画出均衡后的直方图的示意图。(图中的8个不同灰度级对应的归一化直方图为[0.17 0.25 0.21 0.16 0.07 0.08 0.04 0.02])
在这里插入图片描述
答:
在这里插入图片描述
由此可以推得,新的灰度级为
在这里插入图片描述

在这里插入图片描述
由此绘得新的直方图:
在这里插入图片描述

题3

一幅图像的灰度PDF, p r ( r ) p_r\left(r\right) pr(r)示于下图。先对此图进行灰度变换,使其灰度表达式为下面右图的 p z ( z ) p_z\left(z\right) pz(z)。假设灰度值连续,求完成这一要求的变换(r到z)。
在这里插入图片描述
答:
先对 p r ( r ) p_r\left(r\right) pr(r)做直方图均衡化:
s = T ( r ) = ∫ 0 r ( − 2 w + 2 ) d w = − r 2 + 2 r s=T\left(r\right)=\int_{0}^{r}\left(-2w+2\right)dw=-r^2+2r s=T(r)=0r(2w+2)dw=r2+2r
再对 p z ( z ) p_z\left(z\right) pz(z)做直方图均衡化:
H ( z ) = ∫ 0 z ( 2 w ) d w = z 2 H\left(z\right)=\int_{0}^{z}\left(2w\right)dw=z^2 H(z)=0z(2w)dw=z2
可以得到:
z = ± H ( z ) z=\pm\sqrt{H\left(z\right)} z=±H(z)
由于灰度值只能为正,则:
z = H ( z ) z=\sqrt{H\left(z\right)} z=H(z)
H ( z ) H\left(z\right) H(z)替换成 s s s
z = − r 2 + 2 r z=\sqrt{-r^2+2r} z=r2+2r

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值