题1
(a)试求出实现示于下图的对比度展宽变换的连续函数。此函数不仅包含参数m,而且还包括参数E,以便于控制灰度值由低向高转化时的函数斜率。该函数应归一化,以使它的最小值和最大值分别为0和1
答:
s
=
T
(
r
)
=
1
1
+
(
m
/
r
)
E
s = T\left( r \right) = \frac{1}{{1 + {{\left( {m/r} \right)}^E}}}
s=T(r)=1+(m/r)E1
(b)作为参数E的函数,设计一组变换,m值固定为L/2,L是图像中灰度的级数
答:
题2
一幅8灰度级图像具有如下所示的直方图,求直方图均衡后的灰度级和对应概率,并画出均衡后的直方图的示意图。(图中的8个不同灰度级对应的归一化直方图为[0.17 0.25 0.21 0.16 0.07 0.08 0.04 0.02])
答:
由此可以推得,新的灰度级为
且
由此绘得新的直方图:
题3
一幅图像的灰度PDF,
p
r
(
r
)
p_r\left(r\right)
pr(r)示于下图。先对此图进行灰度变换,使其灰度表达式为下面右图的
p
z
(
z
)
p_z\left(z\right)
pz(z)。假设灰度值连续,求完成这一要求的变换(r到z)。
答:
先对
p
r
(
r
)
p_r\left(r\right)
pr(r)做直方图均衡化:
s
=
T
(
r
)
=
∫
0
r
(
−
2
w
+
2
)
d
w
=
−
r
2
+
2
r
s=T\left(r\right)=\int_{0}^{r}\left(-2w+2\right)dw=-r^2+2r
s=T(r)=∫0r(−2w+2)dw=−r2+2r
再对
p
z
(
z
)
p_z\left(z\right)
pz(z)做直方图均衡化:
H
(
z
)
=
∫
0
z
(
2
w
)
d
w
=
z
2
H\left(z\right)=\int_{0}^{z}\left(2w\right)dw=z^2
H(z)=∫0z(2w)dw=z2
可以得到:
z
=
±
H
(
z
)
z=\pm\sqrt{H\left(z\right)}
z=±H(z)
由于灰度值只能为正,则:
z
=
H
(
z
)
z=\sqrt{H\left(z\right)}
z=H(z)
将
H
(
z
)
H\left(z\right)
H(z)替换成
s
s
s:
z
=
−
r
2
+
2
r
z=\sqrt{-r^2+2r}
z=−r2+2r