[LeetCode]322.零钱兑换

题目

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1

示例 1:

输入: coins = [1, 2, 5], amount = 11
输出: 3 
解释: 11 = 5 + 5 + 1

示例 2:

输入: coins = [2], amount = 3
输出: -1

说明:
你可以认为每种硬币的数量是无限的。

解题思路

我们采用自下而上的方式进行思考。仍定义 F(i) 为组成金额 i 所需最少的硬币数量,假设在计算 F(i) 之前,我们已经计算出 F(0)到F(i-1) 的答案。
则 F(i) 对应的转移方程应为:F(i)=min[F(i -c_j)] + 1 ,其中 j=0,1,…,n-1
其中 c_j 代表的是第 j 枚硬币的面值,即我们枚举最后一枚硬币面额是 c_j,那么需要从 i-c_j 这个金额的状态 F(i-c_j) 转移过来,再算上枚举的这枚硬币数量 1 的贡献,由于要硬币数量最少,所以 F(i) 为前面能转移过来的状态的最小值加上枚举的硬币数量 1 。
步骤:
1)开创一个(n+1)维的dp数组,初始化为无限大(一般求最小值,则初始化为一个比较大的数),便于判断;
2)将dp[0],也就是总金额为0时赋值为0
3)从总金额为1时进入循环,分别用每一种硬币,如果总金额减去当前硬币值之后的剩余金额大于等于0,则计算剩余金额所需的最小硬币数,比较每种硬币情况下剩余金额所需的最小硬币数,最后结果再加1
4)返回题目要求的总金额所需的最小硬币数,也就是dp[-1]。

复杂度分析:
时间复杂度:O(Sn)。其中 S 是金额,n 是面额数。我们一共需要计算 O(S) 个状态,S 为题目所给的总金额。对于每个状态,每次需要枚举 n 个面额来转移状态,所以一共需要 O(Sn) 的时间复杂度。
空间复杂度:O(S)。DP 数组需要开长度为总金额 S 的空间。

代码

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        dp = [float('inf')] * (amount+1)
        dp[0] = 0
        for i in range(1, amount+1):
            for j in coins:
                if i-j>=0:
                    # 将之前的dp[i]与减去当前硬币值之后面额的dp[i-j]+1进行比较
                    #(第一次的dp[i]为inf,之后的dp[i]是每一轮硬币比较后的值)
                    dp[i] = min(dp[i], dp[i-j]+1)
        return -1 if dp[amount]==float('inf') else dp[-1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值