[LeetCode]21. 合并两个有序链表

题目

将两个升序链表合并为一个新的升序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。

示例:

输入:1->2->4, 1->3->4
输出:1->1->2->3->4->4

解题思路

解法一:迭代

算法步骤:
1)初始化: 伪头节点 dummy,节点 cur 指向 dummy 。
2)循环合并: 当 l1 或 l2为空时跳出;
2.1)当 l1.val <= l2.val 时:cur 的后继节点指定为 l1,并使 l1 向前走一步;
2.2)当 l1.val > l2.val 时:cur 的后继节点指定为 l2,并使 l2 向前走一步;
3)合并剩余尾部,跳出时有两种情况,即 l1为空 或 l2为空:
3.1)若 l1 != null : 将 l1 添加至节点 cur 之后;
3.2)否则,将 l2添加至节点 cur 之后。
4)返回值: 合并链表在伪头节点 dummy之后,因此返回 dummy.next即可。

复杂度分析:
时间复杂度:O(n + m) ,其中 n 和 m 分别为两个链表的长度。因为每次循环迭代中,l1 和 l2 只有一个元素会被放进合并链表中, 因此 while 循环的次数不会超过两个链表的长度之和。所有其他操作的时间复杂度都是常数级别的,因此总的时间复杂度为 O(n+m)。
空间复杂度:O(1) 。我们只需要常数的空间存放若干变量。

解法二:递归

如果 l1 或者 l2 一开始就是空链表 ,那么没有任何操作需要合并,所以我们只需要返回非空链表。否则,我们要判断 l1 和 l2 哪一个链表的头节点的值更小,然后递归地决定下一个添加到结果里的节点。如果两个链表有一个为空,递归结束。

复杂度分析:
时间复杂度:O(n + m),其中 n 和 m 分别为两个链表的长度。因为每次调用递归都会去掉 l1 或者 l2 的头节点(直到至少有一个链表为空),函数 mergeTwoList 至多只会递归调用每个节点一次。因此,时间复杂度取决于合并后的链表长度,即 O(n+m)。
空间复杂度:O(n + m),其中 n 和 m 分别为两个链表的长度。递归调用 mergeTwoLists 函数时需要消耗栈空间,栈空间的大小取决于递归调用的深度。结束递归调用时 mergeTwoLists 函数最多调用 n+m 次,因此空间复杂度为 O(n+m)。

:关于合并若干有序链表的详细解法可参考:23. 合并K个排序链表

代码

解法一:迭代

Python代码如下:

# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, x):
#         self.val = x
#         self.next = None

class Solution:
    def mergeTwoLists(self, l1: ListNode, l2: ListNode) -> ListNode:
        head = point = ListNode(0)
        while l1 and l2:
            if l1.val<l2.val:
                point.next = l1
                l1 = l1.next
            else:
                point.next = l2
                l2 = l2.next
            point = point.next
        if l1:
            point.next = l1
        if l2:
            point.next = l2
        return head.next

Java代码如下:

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) { val = x; }
 * }
 */
class Solution {
    public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
        ListNode head = new ListNode(0);
        ListNode point = head;
        while(l1 != null && l2 != null){
            if(l1.val<l2.val){
                point.next = l1;
                l1 = l1.next;
            }else{
                point.next = l2;
                l2 = l2.next;
            }
            point = point.next;
        }
        if(l1 != null){
            point.next = l1;
        }
        if(l2 != null){
            point.next = l2;
        }
        return head.next;
    }
}

解法二:递归

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) { val = x; }
 * }
 */
class Solution {
    public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
        if(l1 == null){
            return l2;
        }
        if(l2 == null){
            return l1;
        }
        if(l1.val <= l2.val){
            l1.next = mergeTwoLists(l1.next, l2);
            return l1;
        }else{
            l2.next = mergeTwoLists(l1, l2.next);
            return l2;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值