题目
请完成一个函数,输入一个二叉树,该函数输出它的镜像。
例如输入:
4
/ \
2 7
/ \ / \
1 3 6 9
镜像输出:
4
/ \
7 2
/ \ / \
9 6 3 1
示例 1:
输入:root = [4,2,7,1,3,6,9]
输出:[4,7,2,9,6,3,1]
限制:
0 <= 节点个数 <= 1000
解题思路
解法一:递归法
先序遍历一颗二叉树,如果当前节点有子节点,就交换它的两个子节点。然后再递归遍历交换后的新左节点和新右节点。当遍历完所有节点后,就得到了二叉树的镜像表示。
具体步骤:
1)递归终止条件: 当节点 root 为空时,直接返回 null。
2)递推工作:
2.1)初始化一个临时节点 temp ,用于暂存 root 的左子节点;
2.2)将右子节点的值作为 root 的 新左子节点 ,将临时节点 temp 的值作为 root 的 新右子节点 。
2.3)继续递归新左子节点以及递归新右子节点 。
3)递归的返回值: 当前节点 root;
复杂度分析:
时间复杂度 O(N):其中 N 为二叉树的节点数量,建立二叉树镜像需要遍历树的所有节点,占用 O(N) 时间。
空间复杂度 O(N):最差情况下(当二叉树退化为链表),递归时系统需使用 O(N) 大小的栈空间。
解法二:辅助栈
利用栈遍历树的所有节点 node ,并交换每个 node 的左、右子节点。
具体步骤:
1)特例处理: 当 root 为空时,直接返回 null ;
2)初始化: 将根节点 root 加入栈中 。
3)当栈 stack 不为空时进入循环:
3.1)出栈: 栈顶节点出栈,记为 node ;
3.2)添加子节点: 将 node 的左、右子节点入栈;
3.3)交换: 交换 node 的左、右子节点。
4)当栈为空时退出循环,返回根节点 root 。
复杂度分析:
时间复杂度 O(N) : 其中 N 为二叉树的节点数量,建立二叉树镜像需要遍历树的所有节点,占用 O(N) 时间。
空间复杂度 O(log N) : 最差情况下(当为满二叉树时),栈 stack 最多同时存储 log N 个节点,占用 O(log N) 额外空间。
代码
解法一:递归法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode mirrorTree(TreeNode root) {
if(root == null){
return null;
}
// if(root.left == null && root.right == null){
// return root;
// }
TreeNode temp = root.left;
root.left = root.right;
root.right = temp;
if(root.left != null){
mirrorTree(root.left);
}
if(root.right != null){
mirrorTree(root.right);
}
return root;
}
}
解法二:辅助栈
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode mirrorTree(TreeNode root) {
if(root == null){
return null;
}
Deque<TreeNode> stack = new ArrayDeque<TreeNode>();
stack.addLast(root);
while(!stack.isEmpty()){
TreeNode node = stack.removeLast();
if(node.left != null){
stack.addLast(node.left);
}
if(node.right != null){
stack.addLast(node.right);
}
TreeNode temp = node.left;
node.left = node.right;
node.right = temp;
}
return root;
}
}