题目
给定一个非空二叉树,返回其最大路径和。
本题中,路径被定义为一条从树中任意节点出发,达到任意节点的序列。该路径至少包含一个节点,且不一定经过根节点。
示例 1:
输入: [1,2,3]
1
/ \
2 3
输出: 6
示例 2:
输入: [-10,9,20,null,null,15,7]
-10
/ \
9 20
/ \
15 7
输出: 42
解题思路
先实现一个函数能够计算二叉树中的一个节点的最大贡献值,具体而言,就是在以该节点为根节点的子树中寻找以该节点为起点的一条路径,使得该路径上的节点值之和最大:
1)空节点的最大贡献值等于 0。
2)非空节点的最大贡献值等于该节点值加上其左、右子节点的最大贡献值中的较大一方。
3)对于叶节点来说,最大贡献值等于节点值。
对于二叉树中的一个节点,该节点的最大路径和取决于该节点的值与该节点的左右子节点的最大贡献值,
1)如果子节点的最大贡献值大于等于 0,则计入该节点的最大路径和,
2)如果子节点的最大贡献值小于 0,则不计入该节点的最大路径和(可以将其简单设置为0,方便计算)。
3)维护一个全局变量 res 存储最大路径和,在递归过程中更新 res 的值,最后得到的 res 的值即为二叉树中的最大路径和。
复杂度分析:
时间复杂度:O(N),其中 N 是二叉树中的节点个数。对每个节点访问不超过 2 次。
空间复杂度:O(N),其中 N 是二叉树中的节点个数。空间复杂度主要取决于递归调用层数,最大层数等于二叉树的高度,最坏情况下,二叉树的高度等于二叉树中的节点个数。
代码
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
// 设定一个全局变量存储最终结果
private int res = Integer.MIN_VALUE;
public int maxPathSum(TreeNode root) {
getMaxSum(root);
return res;
}
private int getMaxSum(TreeNode root){
if(root == null){
return 0;
}
// 如果子树的最大贡献值小于 0,就将其置 0,表示最大路径不包含子树
int left = Math.max(0, getMaxSum(root.left));
int right = Math.max(0, getMaxSum(root.right));
// 更新最大路径和
res = Math.max(res, left + root.val + right);
return Math.max(left, right) + root.val;
}
}