机器学习
文章平均质量分 79
宇仔TuT
Swift中文社区负责人/软件工程师/炒股爱好者/业余摄影爱好者,目前就职于微软
展开
-
机器学习|DBSCAN 算法的数学原理及代码解析
DBSCAN算法通过计算数据样本之间的密度来完成聚类任务。距离度量:通常使用欧氏距离或曼哈顿距离来度量样本点之间的距离。领域半径:表示样本点在距离度量上的阈值,用于确定一个样本点的邻域。核心对象(Core Object):如果一个样本点周围的密度达到一定阈值(eps),则该样本点称为核心对象。直接密度可达(Directly Density-Reachable):如果点p在点q的ε-邻域内,并且点q是核心对象,则点p从点q直接密度可达。密度可达(Density-Reachable):对于点p和q。原创 2023-08-18 16:40:07 · 1662 阅读 · 1 评论 -
机器学习|Softmax 回归的数学理解及代码解析
通过本文,我们详细讲解了 Softmax 回归的数学原理,并提供了一个简单的 Python 示例代码展示了如何实现该算法。希望本文能够帮助读者更好地理解 Softmax 回归,并能够应用到实际问题中。如果你对 Softmax 回归或其他机器学习算法有任何疑问或想法,请在评论区留言,期待与大家的交流讨论!原创 2023-08-16 14:40:38 · 1308 阅读 · 0 评论 -
机器学习|决策树:数学原理及代码解析
通过本文,我们详细讲解了决策树的数学原理,并提供了一个简单的 Python 示例代码展示了如何实现和可视化决策树算法。希望本文能够帮助读者更好地理解决策树,并能够应用到实际问题中。如果你对决策树或其他机器学习算法有任何疑问或想法,请在评论区留言,期待与大家的交流讨论!原创 2023-08-16 14:55:38 · 1596 阅读 · 0 评论