机器学习|Softmax 回归的数学理解及代码解析

本文深入探讨了Softmax回归的数学原理,介绍了如何将输入向量映射到多类别概率分布。提供了Python代码示例,帮助读者理解和实现Softmax回归算法,以进行多类别分类。
摘要由CSDN通过智能技术生成

机器学习|Softmax 回归的数学理解及代码解析

Softmax 回归是一种常用的多类别分类算法,适用于将输入向量映射到多个类别的概率分布。在本文中,我们将深入探讨 Softmax 回归的数学原理,并提供 Python 示例代码帮助读者更好地理解和实现该算法。

Softmax 回归数学原理

Softmax 函数将输入向量的线性得分转换为每个类别的概率。给定一个输入向量 x,有如下公式计算 Softmax 函数的输出:

P ( y = j ∣ x ) = e x j ∑ k = 1 K e x k P(y=j \mid x) = \frac{e^{x_j}}{\sum_{k=1}^{K} e^{x_k}} P(y=jx)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值