AttributeError: module ‘tensorflow’ has no attribute 'Session’错误解决
import tensorflow as tf
tf.Session()
报错
错误原因:报错AttributeError: module ‘tensorflow’ has no attribute ‘Session’。这是因为编程采用的是1.0的写法,但是在新的Tensorflow 2.0版本中已经移除了Session这一模块,解决办法有两个
1:改换运行代码
tf.compat.v1.Session()
2:
import tensorflow.compat.v1 as tf
tf.compat.v1.disable_eager_execution()
或
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
来替换 import tesorflow as tf
tensorflow.python.framework.errors_impl.InternalError: Blas GEMV launch failed: m=2, n=10 [Op:MatMul] name: MatMul/内存问题
tensorflow在运行程序时不考虑程序的复杂性,都调用尽可能多的显存,于是有可能出现问题,当然可以通过设置来调整:
import os
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
或
import tensorflow as tf
tf.config.set_soft_device_placement(True)
physical_devices = tf.config.list_physical_devices('GPU')
if len(physical_devices) > 0:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
或
config = tf.ConfigProto()#tf.ConfigProto()函数在创建session的时候,用来对session进行参数配置
config.gpu_options.allow_growth = True
session = tf.Session(config=config)
可以解决
在程序中,设置GPU设备的环境变量
os.environ[“CUDA_DEVICE_ORDER”] = “PCI_BUS_ID” # 按照PCI_BUS_ID顺序从0开始排列GPU设备
os.environ[“CUDA_VISIBLE_DEVICES”] = “0” #设置当前使用的GPU设备仅为0号设备
os.environ[“CUDA_VISIBLE_DEVICES”] = “1” #设置当前使用的GPU设备仅为1号设备
os.environ[“CUDA_VISIBLE_DEVICES”] = “0,1” #设置当前使用的GPU设备为0,1号两个设备
- 自动选择运行设备 :
tf.ConfigProto(allow_soft_placement=True)
在tf中,通过命令 “with tf.device(’/cpu:0’):”,允许手动设置操作运行的设备。如果手动设置的设备不存在或者不可用,就会导致tf程序等待或异常,为了防止这种情况,可以设置tf.ConfigProto()中参数allow_soft_placement=True,允许tf自动选择一个存在并且可用的设备来运行操作
onfig = tf.ConfigProto(allow_soft_placement=True, allow_soft_placement=True)
config.gpu_options.per_process_gpu_memory_fraction = 0.4 #占用40%显存
sess = tf.Session(config=config)