tensorflow基本版本编程问题和显存爆掉问题记录

AttributeError: module ‘tensorflow’ has no attribute 'Session’错误解决

import tensorflow as tf
tf.Session()

报错
错误原因:报错AttributeError: module ‘tensorflow’ has no attribute ‘Session’。这是因为编程采用的是1.0的写法,但是在新的Tensorflow 2.0版本中已经移除了Session这一模块,解决办法有两个
1:改换运行代码

tf.compat.v1.Session()

2:

import tensorflow.compat.v1 as tf
tf.compat.v1.disable_eager_execution()

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

来替换 import tesorflow as tf

tensorflow.python.framework.errors_impl.InternalError: Blas GEMV launch failed: m=2, n=10 [Op:MatMul] name: MatMul/内存问题

tensorflow在运行程序时不考虑程序的复杂性,都调用尽可能多的显存,于是有可能出现问题,当然可以通过设置来调整:

import os
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"

import tensorflow as tf

tf.config.set_soft_device_placement(True)
physical_devices = tf.config.list_physical_devices('GPU')
if len(physical_devices) > 0:
	tf.config.experimental.set_memory_growth(physical_devices[0], True)

config = tf.ConfigProto()#tf.ConfigProto()函数在创建session的时候,用来对session进行参数配置
config.gpu_options.allow_growth = True
session = tf.Session(config=config)

可以解决
在程序中,设置GPU设备的环境变量

os.environ[“CUDA_DEVICE_ORDER”] = “PCI_BUS_ID” # 按照PCI_BUS_ID顺序从0开始排列GPU设备
os.environ[“CUDA_VISIBLE_DEVICES”] =0#设置当前使用的GPU设备仅为0号设备
os.environ[“CUDA_VISIBLE_DEVICES”] =1#设置当前使用的GPU设备仅为1号设备
os.environ[“CUDA_VISIBLE_DEVICES”] =0,1#设置当前使用的GPU设备为0,1号两个设备
  1. 自动选择运行设备 : tf.ConfigProto(allow_soft_placement=True)

在tf中,通过命令 “with tf.device(’/cpu:0’):”,允许手动设置操作运行的设备。如果手动设置的设备不存在或者不可用,就会导致tf程序等待或异常,为了防止这种情况,可以设置tf.ConfigProto()中参数allow_soft_placement=True,允许tf自动选择一个存在并且可用的设备来运行操作

onfig = tf.ConfigProto(allow_soft_placement=True, allow_soft_placement=True)
config.gpu_options.per_process_gpu_memory_fraction = 0.4  #占用40%显存
sess = tf.Session(config=config)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kelinnn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值