机器学习两种方法——监督学习和无监督学习(通俗理解)

前言

机器学习分为:监督学习,无监督学习,半监督学习(也可以用hinton所说的强化学习)等。

在这里,主要理解一下监督学习和无监督学习。

监督学习(supervised learning)

从给定的训练数据集中学习出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果。监督学习的训练集要求包括输入输出,也可以说是特征和目标。训练集中的目标是由人标注的。监督学习就是最常见的分类(注意和聚类区分)问题,通过已有的训练样本(即已知数据及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优表示某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的。也就具有了对未知数据分类的能力。监督学习的目标往往是让计算机去学习我们已经创建好的分类系统(模型)。

监督学习是训练神经网络和决策树的常见技术。这两种技术高度依赖事先确定的分类系统给出的信息,对于神经网络,分类系统利用信息判断网络的错误,然后不断调整网络参数。对于决策树,分类系统用它来判断哪些属性提供了最多的信息。

常见的有监督学习算法:回归分析和统计分类。最典型的算法是KNN和SVM。

有监督学习最常见的就是:regression&classification

Regression:Y是实数vector。回归问题,就是拟合(x,y)的一条曲线,使得价值函数(costfunction) L最小

   

Classification:Y是一个有穷数(finitenumber),可以看做类标号,分类问题首先要给定有lable的数据训练分类器,故属于有监督学习过程。分类过程中cost function l(X,Y)是X属于类Y的概率的负对数。

其中fi(X)=P(Y=i/X)。

 

无监督学习(unsupervised learning)

输入数据没有被标记,也没有确定的结果。样本数据类别未知,需要根据样本间的相似性对样本集进行分类(聚类,clustering)试图使类内差距最小化,类间差距最大化。通俗点将就是实际应用中,不少情况下无法预先知道样本的标签,也就是说没有训练样本对应的类别,因而只能从原先没有样本标签的样本集开始学习分类器设计。

非监督学习目标不是告诉计算机怎么做,而是让它(计算机)自己去学习怎样做事情。非监督学习有两种思路。第一种思路是在指导Agent时不为其指定明确分类,而是在成功时,采用某种形式的激励制度。需要注意的是,这类训练通常会置于决策问题的框架里,因为它的目标不是为了产生一个分类系统,而是做出最大回报的决定,这种思路很好的概括了现实世界,agent可以对正确的行为做出激励,而对错误行为做出惩罚。

无监督学习的方法分为两大类:

(1)    一类为基于概率密度函数估计的直接方法:指设法找到各类别在特征空间的分布参数,再进行分类。

(2)    另一类是称为基于样本间相似性度量的简洁聚类方法:其原理是设法定出不同类别的核心或初始内核,然后依据样本与核心之间的相似性度量将样本聚集成不同的类别。

利用聚类结果,可以提取数据集中隐藏信息,对未来数据进行分类和预测。应用于数据挖掘,模式识别,图像处理等。

    PCA和很多deep learning算法都属于无监督学习。 

两者的不同点

1.      有监督学习方法必须要有训练集与测试样本。在训练集中找规律,而对测试样本使用这种规律。而非监督学习没有训练集,只有一组数据,在该组数据集内寻找规律。

2.      有监督学习的方法就是识别事物,识别的结果表现在给待识别数据加上了标签。因此训练样本集必须由带标签的样本组成。而非监督学习方法只有要分析的数据集的本身,预先没有什么标签。如果发现数据集呈现某种聚集性,则可按自然的聚集性分类,但不予以某种预先分类标签对上号为目的。

3.      非监督学习方法在寻找数据集中的规律性,这种规律性并不一定要达到划分数据集的目的,也就是说不一定要“分类”。

这一点是比有监督学习方法的用途要广。    譬如分析一堆数据的主分量,或分析数据集有什么特点都可以归于非监督学习方法的范畴。

4.      用非监督学习方法分析数据集的主分量与用K-L变换计算数据集的主分量又有区别。后者从方法上讲不是学习方法。因此用K-L变换找主分量不属于无监督学习方法,即方法上不是。而通过学习逐渐找到规律性这体现了学习方法这一点。在人工神经元网络中寻找主分量的方法属于无监督学习方法。 

何时采用哪种方法

  简单的方法就是从定义入手,有训练样本则考虑采用监督学习方法;无训练样本,则一定不能用监督学习方法。但是,现实问题中,即使没有训练样本,我们也能够凭借自己的双眼,从待分类的数据中,人工标注一些样本,并把它们作为训练样本,这样的话,可以把条件改善,用监督学习方法来做。对于不同的场景,正负样本的分布如果会存在偏移(可能大的偏移,可能比较小),这样的话,监督学习的效果可能就不如用非监督学习了。

<think>好的,我现在要帮用户解答“深度学习大模型的关系”这个问题。首先,我需要明确用户的需求是什么。他们可能对这两个概念有一些基础了解,但想更清楚地知道它们之间如何关联。用户可能是学生、技术爱好者,或者刚开始学习人工智能的人。 接下来,我得回顾已有的知识。深度学习机器学习的一个子领域,基于神经网络,尤其是深度神经网络。而大模型通常指的是参数量非常大的模型,比如GPT-3、BERT等。它们之间的关系应该是大模型属于深度学习的一种应用,但具体怎么关联需要详细说明。 用户可能想知道大模型为什么需要深度学习,或者深度学习在大模型中的作用是什么。可能还需要区分传统机器学习深度学习的区别,以及大模型相比普通深度学习模型有什么特别之处。 我需要先解释深度学习的基本概念,比如神经网络的结构、层次化特征学习等。然后介绍大模型,包括参数规模、训练数据量、计算资源需求等。接着,将两者结合起来,说明大模型是如何通过深度学习技术构建的,以及深度学习的发展如何促进了大模型的出现。 还要注意用户可能的深层需求。他们可能想知道为什么现在大模型这么火,或者深度学习大模型在实际应用中的例子。比如,GPT-3这样的模型是如何通过深度学习训练出来的,或者大模型在自然语言处理中的优势。 需要避免使用过于专业的术语,用通俗易懂的语言解释。同时,可能需要举例说明,比如对比传统的小型神经网络大模型在参数性能上的差异。此外,还可以提到硬件的发展,如GPUTPU,如何支持了大模型的训练,这也是深度学习大模型关系密切的一个因素。 另外,用户可能对两者的未来发展趋势感兴趣,可以简要提到大模型面临的挑战,比如计算成本高、环境影响等,以及深度学习未来的发展方向如何影响大模型的演进。 最后,总结时要强调深度学习是大模型的基础技术,而大模型是深度学习在规模应用上的扩展,两者相互促进,共同推动了人工智能的发展。</think>深度学习“大模型”(如GPT、PaLM等)是人工智能领域的两个密切关联但不同层次的概念。简单来说,**深度学习是实现大模型的核心技术框架,而大模型是深度学习技术发展到一定阶段的产物**。以下是两者的关系解析: --- ### **一、深度学习:技术基础** 深度学习是一种**基于人工神经网络的机器学习方法**,其核心特点是通过多层级(“深度”)的非线性变换,从数据中自动提取特征。关键特性包括: 1. **层次化特征学习**: 低层网络识别基础特征(如图像边缘、文字笔画),高层网络组合特征形成复杂概念(如人脸、语义)。 2. **端到端训练**: 无需人工设计特征,直接从原始数据(文本、图像等)输入到最终结果输出进行整体优化。 3. **依赖大数据与算力**: 需要海量数据GPU/TPU等硬件加速才能有效训练深层网络。 **经典应用**:图像分类(ResNet)、语音识别(WaveNet)、机器翻译(早期Seq2Seq模型)等。 --- ### **二、大模型:深度学习的规模化延伸** 大模型(Large Language Models, LLMs)特指**参数量极大(通常超百亿)、训练数据极广的深度神经网络**,代表如GPT-3(1750亿参数)、PaLM-2(3400亿参数)。其本质是**深度学习技术通过规模扩展产生的质变**: | **对比维度** | **传统深度学习模型** | **大模型** | |-----|----------------------------| | 参数量级 | 百万~十亿级 | 百亿~万亿级 | | 训练数据 | 领域特定数据集(如ImageNet) | 全网文本、跨模态数据 | | 计算资源 | 单机多GPU可训练 | 数千TPU集群+数月计算 | | 能力特点 | 专精单一任务 | 通用性、涌现能力(如逻辑推理)| --- ### **三、深度学习如何支撑大模型?** 1. **架构基础**: 大模型普遍采用深度学习经典结构(如Transformer),通过堆叠更多层、扩大注意力机制规模实现性能突破。 2. **训练方法**: 依赖深度学习的反向传播、优化器(如AdamW)、分布式训练等技术,使超大规模网络参数能够协同更新。 3. **泛化能力来源**: 深度学习“通过数据驱动表征学习”的特性,让大模型能吸收海量数据中的潜在规律,而非依赖人工规则。 --- ### **四、大模型对深度学习的反向推动** 1. **理论突破需求**: 大模型出现“**涌现能力**”(模型规模突破阈值后突然获得新能力),迫使学界重新思考深度学习理论(如神经网络的 Scaling Laws)。 2. **技术革新**: - **分布式训练框架**(如Megatron-LM、DeepSpeed) - **高效注意力算法**(FlashAttention) - **参数微调技术**(LoRA、Adapter) 这些创新最初为大模型服务,后反哺整个深度学习领域。 3. **新研究范式**: 传统深度学习侧重“模型结构创新”,而大模型时代更关注“如何高效利用规模”(数据、算力、参数量的协同扩展)。 --- ### **五、典型案例关联** 1. **GPT系列**: - 基于Transformer的深度学习架构 - 通过增加层数(GPT-3有96层)参数量实现能力跃升 2. **多模态大模型**(如GPT-4V): - 用深度学习统一处理文本、图像、视频的编码器-解码器框架 3. **科学计算大模型**(AlphaFold 2): - 结合图神经网络(GNN)与注意力机制,预测蛋白质结构 --- ### **六、未来关系演进** 1. **效率挑战**: 大模型的能耗与成本问题,推动深度学习向“稀疏化”(如MoE架构)、“轻量化”方向发展。 2. **认知启发**: 大模型展现的类人推理能力,促使学界用深度学习模拟更复杂的认知过程(如世界模型构建)。 3. **技术收敛**: 传统深度学习与大模型技术逐渐融合,形成“预训练大模型+下游微调”的新范式。 --- ### **总结** 如果把深度学习比作“发动机”,大模型就是搭载了这台发动机的“超级跑车”——前者提供基础动力原理,后者通过极致的设计与规模释放潜力。二者共同推动人工智能从“解决特定问题”迈向“通用智能”的探索。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风翼冰舟

额~~~CSDN还能打赏了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值