caffe
文章平均质量分 88
风翼冰舟
Machine Learning,
Algorithm
展开
-
【caffe-Windows】以mnist为例lmdb格式数据
前言前面介绍的案例都是leveldb的格式,但是比较流行和实用的格式是lmdb,原因从此网站摘取它们都是键/值对(Key/Value Pair)嵌入式数据库管理系统编程库。虽然lmdb的内存消耗是leveldb的1.1倍,但是lmdb的速度比leveldb快10%至15%,更重要的是lmdb允许多种训练模型同时读取同一组数据集。因此lmdb取代了leveldb成为Caffe默认的数原创 2016-08-19 15:19:39 · 8450 阅读 · 1 评论 -
【caffe-Windows】基于Python多标签方法——VOC2012数据集
前言按照上一篇博客所遗留的话题:多标签分类,进行初步探索,此篇博客针对caffe官网的多分类进行配置,只不过是Python接口的,不过官网在开头说明可以使用HDF5或者LMDB进行操作,只不过Python更加方便罢了国际惯例,贴参考网址:官网教程:Multilabel classification on PASCAL using python data-layers数据集(VOC2012)官网:Vi原创 2017-06-22 10:14:46 · 3790 阅读 · 2 评论 -
【caffe-Windows】mnist实例编译之model的生成
其实这个和cifar的实例基本相同,只不过数据转换的方法不一样【说明,此博客按照我自己的路径设置的相关操作,读者如果自行选择其他路径,记得在bat和prototxt等文件修改路径】第一步下载数据集THE MNIST DATABASE of handwritten digits官方网址:http://yann.lecun.com/exdb/mnist/为了避免部分人下载速度缓慢或者打原创 2016-06-27 19:01:11 · 9679 阅读 · 47 评论 -
【caffe-matlab】权重以及特征图的可视化
前言移植了各种caffe,是时候进行下一步操作了,先拿可视化下手吧。大部分内容可能跟网上的方法不一样,大家看完我的博客最好去网上看看大牛们的博客,万一被我误导了,就罪过了o(╯□╰)o,开更.............环境:微软caffe+wind7+matlab2013a参考:http://caffe.berkeleyvision.org/tutorial/interfaces.htm原创 2016-09-23 22:26:56 · 24114 阅读 · 36 评论 -
【caffe-Windows】cifar实例编译之model的使用
本文讲解如何对网上下载的一个图片利用训练好的cifar模型进行分类第一步上一篇文章训练好以后会得到两个文件从网上查阅资料解释来看,第一个caffemodel是训练完毕得到的模型参数文件,第二个solverstate是训练中断以后,可以用此文件从中断地方继续训练(具体使用方法目前尚未测试)第二步从网上随便下载一个图片,但是注意,最好是cifar里面包含的种类,当然也可以下原创 2016-05-23 17:31:36 · 12973 阅读 · 69 评论 -
【caffe-Windows】识别率批量输出——matlab实现
前言今天看到群里有人问”用matlab输出测试集的精度“,瞎试了一下,好像还成功了。主要还是依据前面所有在matlab中操作caffe的博客。这里说一下:classification.m是适用单张图片的精度,类似于classification.exe的功能;这里要做的是在matlab中实现caffe.exe test的功能,也就是批量输出精度分析根据caffe.exe test和classifica原创 2017-04-14 17:35:36 · 3025 阅读 · 14 评论 -
【caffe-windows】全卷积网络特征图分析
前言突然就想分析一下全卷积网络的转置卷积部分了, 就是这么猝不及防的想法, 而且这个网络对图片的输入大小无要求,这么神奇的网络是时候分析一波了,我个人的学习方法调试代码,然后对照论文看理论本次分析主要针对每层的权重大小和特征图大小的推导分析, 最最重要的是转置卷积部分是如何将特征图慢慢扩张到原始图片大小的.国际惯例, 参考博客:FCN的caffe实现戳这里FCN学习:Semantic Segment原创 2017-09-25 14:49:26 · 4829 阅读 · 0 评论 -
【caffe-Windows】caffe+VS2013+Windows无GPU快速配置教程
首先来一波地址:happynear大神的第三方caffe:http://blog.csdn.net/happynear/article/details/45372231Neil Z大神的第三方caffe:https://initialneil.wordpress.com/2015/01/11/build-caffe-in-windows-with-visual-studio-2013-cu原创 2016-05-09 22:02:48 · 79045 阅读 · 282 评论 -
【caffe-Windows】caffe+VS2013+Windows+GPU配置+cifar使用
好吧,先说一个坑~~~千万千万不要擅自去安装CUDNN的v5版本,caffe貌似真的是不支持哇,表示本人已跳进这个坑,花了一下午才发现此坑,并跳出来了先来波地址:CUDA:链接:http://pan.baidu.com/s/1nvyA3Qp 密码:h0f3 官方网址:https://developer.nvidia.com/cuda-toolkitcudnn:链接:http:/原创 2016-05-31 21:37:19 · 28981 阅读 · 44 评论 -
【caffe-Windows】mnist实例编译之model的使用-classification
仿照cifar10的模型使用,本文对mnist的训练方式做了部分修改【注】本文caffe安装路径为E:\CaffeDev-GPU\caffe-master。请自行参考并修改相关路径(debug以及release参考你编译caffe时候采用的模式)第一步按照前面的model生成方法的前两步骤制作数据集,得到两个文件夹。并拷贝到E:\CaffeDev-GPU\caffe-master\Bu原创 2016-08-16 11:24:20 · 19233 阅读 · 73 评论 -
【caffe-Windows】微软官方caffe之 matlab接口配置
前言按照微软的官方地址配置可能会出现一个问题caffe_.mexw64找不到引用模块问题,或者在matlab里面压根找不到caffe_这个函数,下面会提到这两个问题。还是按照步骤来吧【PS1】有GPU同样按照下述步骤,进行即可【PS2】文章在matlab2013a、matlab2014a、matlab2015b、matlab2016a、matlab2018a中配置成功,但是在高版本或者...原创 2016-06-17 22:10:42 · 35114 阅读 · 97 评论 -
【caffe-Windows】以mnist为例的hdf5单标签处理——matlab实现
前言主要是想尝试看一下多标签的caffe是如何进行输入输出的,但是目前还未找到基于原始caffe做多标签输入的代码,大部分都是基于源码做了一部分修改实现多标签分类,caffe官网倒是有一个多标签的Python程序,这个我慢慢研究研究,此篇博客先看看单标签的数据格式制作与训练,以hdf5和mnist数据集为例吧【注】使用hdf5的好处有三个:①相对于前面制作的lmdb和leveldb数据集,用conv原创 2017-06-21 11:10:24 · 3039 阅读 · 3 评论 -
【caffe-Windows】训练自己数据——数据集格式转换
前言看了mnist和cifar的实例,是不是想我们现实中一般都是一张张的图片,和实例里面都不一样呢?那么如何来进行训练呢?为了能够简便点,我们就不自己去采集数据集了,因为第一自己采集的数据集量可能不够,第二,采集的数据集可能标注有很大问题,比如噪声太多等,第三针对每一种数据,我相信有不同的模型去进行classification,并不是一味地套用别人的模型,当然也可以在别人基础上做微调fine原创 2016-09-06 11:22:39 · 16143 阅读 · 45 评论 -
【caffe-matlab】使用matlab训练caffe及绘制loss
前言此博客主要介绍如何利用matlab一步一步训练caffe模型,类似使用caffe.exe 的train命令。国际惯例,参考博客:http://caffe.berkeleyvision.org/tutorial/interfaces.htmlhttp://www.cnblogs.com/denny402/p/5110204.html抱怨一下:matlab的教程是真少哇原创 2016-09-24 21:19:52 · 21184 阅读 · 50 评论 -
【caffe-Windows】mnist实例编译之model的使用-matlab
前言针对上一个caffe文章留下的matlab手写数字识别的问题,感谢caffe中文社区的 @ghgzh 的提示,原文请看:caffe中文社区第一步手写图片的制作方法我就不说了,直接把我自己画的几个数字放到云盘先:三通道图像以及转换所需代码:链接:http://pan.baidu.com/s/1gfqeCAR 密码:88kk转换后的灰度图像:链接:http://pan.baid原创 2016-09-06 10:12:22 · 9255 阅读 · 32 评论 -
【caffe-Windows】微软官方caffe之 Python接口配置及图片生成实例
前言发现许多代码还是用python写的,所以还是配置一下接口吧,虽然博主不会Python,咳咳。在这里使用的python安装包是anaconda2官网地址:https://www.continuum.io/downloads百度云:链接:http://pan.baidu.com/s/1nvrrfQx 密码:1jg5注意一下,我第一安装的时候竟然没有jupyter notebook,原创 2016-10-31 10:49:37 · 18390 阅读 · 35 评论 -
【caffe-Windows】cifar实例编译之model的生成
参考:http://blog.csdn.net/chengzhongxuyou/article/details/50715455准备工作按照之前的教程,成功生成过caffe,并且编译整个caffe.sln项目工程,在\caffe-master\Build\x64\Debug生成了一堆exe文件,后面会使用到除了caffe.exe的另外一个exe【PS】很多VS安装过程中出现问题的,原创 2016-11-25 15:21:16 · 12821 阅读 · 48 评论 -
【caffe-windows】Linux至Windows平台的caffe移植
1、前言主要参考两篇博客以及很多论坛解决细节问题:http://www.cnblogs.com/trantor/p/4570097.htmlhttps://initialneil.wordpress.com/2015/01/11/build-caffe-in-windows-with-visual-studio-2013-cuda-6-5-opencv-2-4-9/移植环境原创 2016-09-21 21:58:14 · 6901 阅读 · 5 评论 -
【caffe-Windows】关于LSTM的使用-coco数据集
前言在caffe-Windows新增LSTM层以后,相信很多人和我一样很好奇如何使用这一层,使用参数都有什么。找了三四个代码,但是大部分配置都出现了问题,因为它们都是基于Linux的,然而逮着一个折腾,还是折腾出来一个了。源码GitHub:https://github.com/jeffdonahue/caffe/tree/recurrent源码云盘:链接:http://pan.baid原创 2017-03-01 22:55:26 · 11267 阅读 · 16 评论 -
【caffe-Windows】关于LSTM的简单小例子
前言这里主要是看到了一个简单的LSTM例子,比上一个coco简单很多,所以在这里记录一下,便于后续的分析,参考博客在上一篇文章的末尾提到过:Recurrent neural nets with Caffe需要说明的是这个例子也并非原原本本的使用caffe自带的LSTM,而是加入了一些东西,所以我们还是得新增层国际惯例,代码链接:作者提供GitHub:https://github.c原创 2017-03-03 10:04:39 · 10250 阅读 · 17 评论 -
【caffe-Windows】添加工程-以classification为例
前言兴趣所向,研究一下如何在caffe工程之外建立一个属于自己的工程,这里以分类为例,将classification.cpp提取出来,然后调用相应的三方库和libcaffe.lib进行编译。这里比较建议有一丢丢C++功底的同志参考学习,主要涉及到利用VS新建工程,添加lib库文件,包含头文件,解决dll丢失问题。国际惯例,贴一堆网址:caffe下新建工程及编译caffe-window搭建自己的小项目原创 2017-04-11 19:39:52 · 5696 阅读 · 6 评论 -
【caffe-matlab】目标检测R-FCN算法于Windows下配置
前言首先谢谢好友推荐的这篇论文及代码,前面学习的caffe可能比较浅显,想要深入caffe就可以从这个代码下手了,配置方法还是挺简单的,但是可能会出现部分问题。在作者的论文中有github的地址。注意,本文只介绍如何配置,并不介绍理论。国际惯例,贴几个地址:论文原始地址:https://arxiv.org/abs/1605.06409论文云盘地址:链接:http://pan.bai原创 2016-10-09 18:52:09 · 15087 阅读 · 72 评论 -
【caffe-Windows】新层添加——LSTM
前言原始的【caffe-Windows】是没有LSTM层的,维护以后的caffe的windows版本也懒得配置了,因为大部分文章的代码还是基于老版caffe。其实大部分的添加层方法都可以参考本博客,仅限Windows。需要的文件有:1. 原始的caffe-Windows:这个第一个博客有写网盘地址,戳这里或者caffe-windows官方:https://github.com/原创 2017-03-01 20:39:09 · 6347 阅读 · 6 评论 -
Openpose——windows编译(炒鸡简单)
前言最近准备看看rtpose的代码,发现已经由openpose这个项目维护着了,由于经常在windows下调试代码,所以尝试了一下如何在windows下编译openpose源码,结果发现,我靠,炒鸡简单,Cmake一步搞定。写博客的目的在于,为了避免后续openpose的项目组各种维护各种加新内容的时候又改变了很多库什么的,比如升级CUDA版本、Opencv之类的,所以这里记录一下当前配置...原创 2018-08-27 17:00:10 · 34277 阅读 · 99 评论