判别模型的玻尔兹曼机论文源码解读

版权声明:欢迎大家一起交流,有错误谢谢指正~~~多句嘴,不要复制代码,因为CSDN排版问题,有些东西会自动加入乱糟糟的字符,最好是自己手写代码。格外注意被“踩”的博客,可能有很大问题,请自行查找大牛们的教程,以免被误导。最后,在确认博客理论正确性的前提下,随意转载,知识大家分享。 https://blog.csdn.net/zb1165048017/article/details/53008282

前言

三号要去参加CAD/CG会议,投了一篇关于使用生成模型和判别模型的RBM做运动捕捉数据风格识别的论文。这段时间一直搞卷积RBM了,差点把原来的实验内容都忘记了,这里复习一下判别式玻尔兹曼机的训练流程。

国际惯例,贴几个链接:

论文1——Energy Based Learning Classification task using Restricted Boltzmann Machines

链接:http://pan.baidu.com/s/1i5foeEx 密码:flq7

论文2——Classification using Discriminative Restricted Boltzmann Machines

链接:http://pan.baidu.com/s/1qYGT9z2 密码:hebj

代码——RBM-on-Classification

github:https://github.com/atzenigor/RBM-on-Classification

链接:http://pan.baidu.com/s/1gf41MKz 密码:z3jq

数据——mnist手写数字数据库

链接:http://pan.baidu.com/s/1boGxPxX 密码:0l25

本文主要是结合论文1及其代码对判别式限制玻尔兹曼机进行解读,代码主要使用在手写数字识别mnist数据库中。

先画一下代码对应的模型结构图


第一步

从主函数入手:trainingClassRBM.m

首先是一系列的初始化,就不说了,主要包含学习率、动量项、权重衰减、分批大小、训练次数,随机初始化权重和偏置等。这里主要关注两行程序:

  discrim = 1;    % 1 to activate the discriminative learning, 0 otherwise
  freeenerg = 1;  % if discrim is zero but one want to compute the free energy

对于这两句话,可以翻开论文1的第五章(第11页)说过这样一句话:


大概意思就是,为了解决特定的分类问题,我们可以简单地定义一个目标函数去进行最小化,进而得到RBM的模型参数。而目标函数可以选择三种:

1、生成模型的训练目标函数


2、判别模型的训练目标函数


3、混合模型的训练目标函数


显然,根据代码,可以发现程序使用了变量discrim来控制是否使用第三种方法,如果discrim=1则使用第三种目标函数,如果discrim=0则使用第一种目标函数。

此后也进行了数据的分批处理和验证集的选取

data_valid = data(end - valid_size + 1 : end, : );
label_valid = labels(end - valid_size + 1 : end, : );

%convert y in the notetion one out of number of classes
lab = boolean(set_y(labels(1:end - valid_size,:), num_class));
%convert the dataset in batches
[batch_data, batch_labels , batch_size] = ...
  createBatches(data(1:end - valid_size,:), lab, num_batch);

第二步

正式进入第一层for循环,用于控制训练次数,每次训练完毕都会输出相应的几个信息,包含重构误差,验证集误差,自由能变化。

  sum_rec_error = 0;
  sum_class_error = 0;
  sum_tot_free_energ = 0;
下一句就是在进行第五次迭代时候,将动量项改变

 if  i_epoch == 5 
      momentum = final_momentum;
  end;
并且使用模拟退火(simulated annealing)算法降低学习率

%simulated annealing
  gamma = (init_gamma) / (1 + (i_epoch - 1) / tau);

第三步

正式进入内层循环对数据的分配处理,每次只取一批数据,大小为100(最后一批大小根据情况而定)

  x = batch_data{iBatch}';
  y = batch_labels{iBatch}';
  batch_size=size(x,2);
进入生成模型的计算,即计算第一步提到的第一个目标函数对应的模型参数更新。

首先计算隐藏层的激活概率值P(h|x,y),这就是在RBM中常说的positive phase根据文章可以得到

而相应的程序就是

 hprob = prob_h_given_xy(x, y, w, u, b_h);       
其中函数prob_h_given_xy为:

function [ prob ] = prob_h_given_xy( x, y, w, u, b_h )
<span style="white-space:pre">	</span>prob = sigmf(bsxfun(@plus, w * x + u * y, b_h), [1 0]);
end
随后进行隐单元的随机激活,这是RBM中经常出现的一步骤,我们称为激活状态:

h = sampling(hprob);
激活函数实现如下:

function [ samp ] = sampling( p )
<span style="white-space:pre">	</span>samp = p > rand(size(p));
end
然后便是对应的negative phase,使用得到的隐单元状态反向计算x和y单元数据

根据论文介绍的激活函数

可以找到对应的激活函数程序写法:

计算P(x|h),很简单,直接计算权重乘以隐单元的激活状态(并非激活概率值)然后加上输入层偏置即可。

function [ prob ] = prob_x_given_h( h, w, b_x )
<span style="white-space:pre">	</span>prob = sig(bsxfun(@plus, w' * h, b_x));
end

计算P(y|h),稍微复杂点,在分母的处理上,需要进行加和,u'*h计算得到的矩阵大小是类别数*批大小,实验中大小是30*716,而sum是将所有行加到第一行,也就是说对每一个样本计算得到的标签层单元数据进行加和,整个过程类似于进行了归一化。

function [ prob ] = prob_y_given_h( h, u , b_y )
<span style="white-space:pre">	</span>prob_not_norm = exp(bsxfun(@plus, u' * h, b_y));
<span style="white-space:pre">	</span>norm_factor = sum(prob_not_norm);
<span style="white-space:pre">	</span>prob = bsxfun(@rdivide, prob_not_norm, norm_factor);
end
计算得到x和y的激活概率值之后同样需要激活状态

xrprob = prob_x_given_h( h, w, b_x );
yrprob = prob_y_given_h( h, u, b_y );
xr = sampling(xrprob);
yr = sampling_y(yrprob);
进行negative phase的最后一步,利用新的x和y的状态值(0或者1)去计算隐层的激活概率值

hrprob = prob_h_given_xy( xr, yr, w, u, b_h);
根据以上计算的positive phase和negative phase相关值计算生成模型各参数的更新梯度,主要包含隐层至输入层的连接权重w,隐层至标签层的连接权重v,输入层偏置b_x,隐藏层偏置b_h,标签层偏置b_y。注意更新的时候用的是激活概率值去更新,而非激活状态值去更新。

g_w_gen = (hprob * x' - hrprob * xrprob') / batch_size;
g_u_gen = (hprob * y' - hrprob * yrprob') / batch_size;
g_b_x_gen = (sum(x,2) - sum(xrprob,2)) / batch_size;
g_b_y_gen = (sum(y,2) - sum(yrprob,2)) / batch_size;
g_b_h_gen = (sum(hprob,2) - sum(hrprob,2)) / batch_size;

第四步

进入判别模型的目标函数计算,上面第一节介绍的第二个目标函数。

当然首先就是判断我们是否选择使用判别模型,以及初始化判别模型计算中的相关参数,包含隐层偏置梯度,两个权重w和u的梯度

    if (discrim || freeenerg)
      %initialization of the gradients
      g_b_h_disc_acc = 0;
      g_w_disc_acc = 0;
      g_u_disc_acc = zeros(h_size,num_class);
特别注意,此处是没有输入层偏置的,详细可看论文1中的这样一句话:


意思就是b(文章的b是输入层的偏置)的梯度为0,因为计算P(y|x)的时候并没有用到输入层的偏置。

让我们看看P(y|x)的计算方法



其中F 就代表自由能量(free energy)

还是写一下比较好,后面的代码会单独计算这个自由能量,其中dy是标签层偏置


后面的步骤便是逐步实现这个采样函数

注意这里的softplus也是一个函数,而非简单的加法,具体介绍点击此处


①首先发现式子中始终有w*x这一项,所以提出来计算一下,避免后面的重复计算

      %ausiliary variables
      w_times_x = w * x;
②接下来计算自由能量函数

 for iClass= 1:num_class
        o_t_y(:,:,iClass) = bsxfun(@plus, b_h + u(:,iClass), w_times_x );
        neg_free_energ(iClass,:) = b_y(iClass) + sum(log(1 + exp(o_t_y(:,:,iClass))));
end;

注意这里的两个变量的维度:

o_t_y维度大小是800*716*30,分别代表隐单元神经元个数、一批样本数、标签总数,就像对隐层求了30个800*716的单元数值,然后后面计算的时候也确实如此,每次计算都用了一个for循环对第三个维度的800*716矩阵分别遍历,应该就是为了计算此样本属于每一个标签的概率。

neg_free_energ大小是30*716,分别代表标签总数、样本总数

计算的时候是依次计算标签层每个神经元所代表的所有样本之和。有点像先用x和y计算得到h,然后将h经过softplus映射,最后将每一个样本的隐层800个单元求和,得到一个样本在对应的标签单元的值。比如o_t_y计算iClass=1时候得到的其实是一个800*716的矩阵,然后经过sum得到1*716的向量,直接作为标签层的第一个单元的所有样本的值即可。

然后记录了一下当前批数据的总共的能量和,用于与下一批的自由能量和相加

sum_tot_free_energ = sum_tot_free_energ + sum(-neg_free_energ(y));
至此“if (discrim || freeenerg)”中的freeenerg计算完毕。
③接下来就是计算discrim对应的参数更新梯度了

主要就是计算P(y|x)根据上面提到的式子。

程序中首先对求得的neg_free_energ进行了零均值化,并计算出了分子的值

        med = mean2(neg_free_energ);      
        p_y_given_x = exp(neg_free_energ - med);
利用分子的值,计算分子/分母的值,注意这里的加是将每个样本对应的30个标签层值相加,即sum(p_y_given_x)的结果是将30*716加和成了1*716维度的向量

p_y_given_x = bsxfun(@rdivide, p_y_given_x, sum(p_y_given_x));
④最后就是计算梯度了

首先计算标签层的梯度,按照原文的公式


说白了就是用原始标签减去P(y|x)推理得到的标签值,最后计算一下加和即可,便得到了标签层偏置更新梯度

        dif_y_p_y = y - p_y_given_x;
        g_b_y_disc_acc = sum(dif_y_p_y,2);

随后便是计算剩下的三个量权重w、v和隐层偏置b_h的梯度,查看论文1的计算方法


其中


相关的计算程序如下:

首先计算第一项和第二项的 O 函数

sig_o_t_y = sig(o_t_y(:,:,iClass)); 
sig_o_t_y_selected = sig_o_t_y(:,y(iClass,:)); 
然后分别套入对b_h、w、u的计算中

g_b_h_disc_acc = g_b_h_disc_acc + sum(sig_o_t_y_selected, 2) - sum(bsxfun(@times, sig_o_t_y, p_y_given_x(iClass,:)),2);
%update the gradient of w fot the class 'iClass'
g_w_disc_acc = g_w_disc_acc + sig_o_t_y_selected * x(:,y(iClass,:))' - bsxfun(@times, sig_o_t_y, p_y_given_x(iClass,:)) * x';
%update the gradient of u fot the class 'iClass'
g_u_disc_acc(:,iClass) = sum(bsxfun(@times, sig_o_t_y, dif_y_p_y(iClass,:)), 2);
注意这两部分代码要用一个for循环包含起来

  for iClass= 1:num_class
主要也就是上面说过的,对o_t_y(维度为隐层单元数*一批样本数*标签类别总数)的第三维进行遍历,每次遍历得到的隐单元数*批样本数作为隐层单元即sig_o_t_y(代码维度是800*716),然后从中抽取出标签为iClass的样本(比如716个样本中,有29个样本标签为当前循环的iClass)得到sig_o_t_y_selected(iClass=1时文章维度为800*29)这样就比较好理解了,就像生成模型的RBM一样:

计算隐层偏置b_h的时候,计算sig_o_t_y_selected与sig_o_t_y*P(y|x)的差值即可;

计算连接权重w的时候,计算sig_o_t_y_selected*x_selected(这个变量代表批样本x中标签为iClass的样本矩阵)与sig_o_t_y*P(y|x)*x对应的差值即可;

计算连接权重u的时候,只需计算sig_o_t_y与dif_y_p_y(iClass,:)的乘积即可,因为在计算dif_y_p_y的时候,已经计算过差值了,所以没有像上面计算b_h和w一样去做差。

⑤全部计算完了,就更新一下判别模型中的几个参数吧

g_b_y_disc = g_b_y_disc_acc / batch_size;
g_b_h_disc = g_b_h_disc_acc / batch_size;
g_w_disc = g_w_disc_acc / batch_size;
g_u_disc = g_u_disc_acc / batch_size;

第五步

利用第一步介绍的目标函数三进行全局梯度更新

 delta_w = delta_w * momentum + ...
      gamma * (discrim * g_w_disc + alpha * g_w_gen - weight_cost * w);
delta_u = delta_u * momentum + ...
      gamma * (discrim * g_u_disc + alpha * g_u_gen - weight_cost * u);
delta_b_x = delta_b_x * momentum + ...
      gamma * alpha * g_b_x_gen;
delta_b_y = delta_b_y * momentum + ...
      gamma * (discrim * g_b_y_disc + alpha * g_b_y_gen);
delta_b_h = delta_b_h * momentum + ...
      gamma * (discrim * g_b_h_disc + alpha * g_b_h_gen);
w = w + delta_w;
u = u + delta_u;
b_x = b_x + delta_b_x;
b_y = b_y + delta_b_y;
b_h = b_h + delta_b_h;
后面做了一个平均,表示没太懂是干什么用的,好像是削减梯度?而且在每次迭代输出的验证集误差的时候使用的依旧是上面的b_y, b_h, w, u 而非做平均的b_y_avg, b_h_avg, w_avg, u_avg 。这个还有待探讨。

第六步

获得所有参数以后需要进行识别,很简单,有一个输入testdata,对应的标签testlabels,总类别数目num_class,对应的模型参数b_y, b_h, w, u,然后利用能量函数F的计算得到样本属于每个标签的概率,前面也说了,neg_free_energ的大小是标签数*样本数,这样就能得到每一个样本对应的每一个标签的概率是对少了,取最大的那个概率就是了。

function [ err ] = predict( testdata, testlabels, num_class, b_y, b_h, w, u )
  numcases= size(testdata, 1);
  w_times_x = w * testdata';
  neg_free_energ = zeros(num_class, numcases);
  for iClass= 1:num_class
    neg_free_energ(iClass,:) = b_y(iClass) + sum(log(1 + ...
      exp(bsxfun(@plus, b_h + u(:,iClass), w_times_x ))));
  end;
  [~, prediction] = max(neg_free_energ);
  err = sum(prediction ~= testlabels') / numcases * 100;

end

第七步

补充一下,如何看模型的效果好坏呢?

首先重构误差不必多说,肯定是慢慢降低


其次就是自由能量了,根据RBM的描述,系统最稳定的时刻就是能量最少的时候。


当然咯,分类误差肯定也是降低啦


还有,有时候能量会突然升高,这时候不要慌,先等等,看看是否一直升高,有可能在某次迭代完成就下降了呢,类似于这样


没有更多推荐了,返回首页