梳理对Spark Standalone的理解

本文详细解析Spark Standalone模式的执行流程,包括Master、Worker和App的角色,资源分配逻辑,以及Task的启动与管理。阐述了Spark在资源层面和任务调度层面的分层设计,展示了其在集群中的高效运作机制。
摘要由CSDN通过智能技术生成

背景

本文不打算从源码分析的角度看standalone如何实现,甚至有的模块和类在分析中都是忽略掉的。
本文目的是透过spark的standalone模式,看类似spark这种执行模式的系统,在设计和考虑与下次资源管理系统对接的时候,有什么值得参考和同通用的地方,比如说接口和类体系,比如说各个执行层次的划分:面向资源的部分 vs 面向摆放的部分;面向资源里面进程的部分 vs 线程的部分等。对这些部分谈谈体会。

执行流程


解释standalone执行原理可以抛开Driver和Client。


首先,简单说明下Master、Worker、App三种角色。

Application:带有自己需要的mem和cpu资源量,会在master里排队,最后被分发到worker上执行。app的启动是去各个worker遍历,获取可用的cpu,然后去各个worker launch executor。

Worker:每台slave起一个(也可以起多个),默认或被设置cpu和mem数,并在内存里做加减维护资源剩余量。Worker同时负责拉起本地的executor backend,即执行进程。

Master:接受Worker、app的注册࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值