Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材料,于是,便需要去申请学校了。要申请国外的任何大学,你都要交纳一定的申请费用,这可是很惊人的。Speakless没有多少钱,总共只攒了n万美元。他将在m个学校中选择若干的(当然要在他的经济承受范围内)。每个学校都有不同的申请费用a(万美元),并且Speakless估计了他得到这个学校offer的可能性b。不同学校之间是否得到offer不会互相影响。“I NEED A OFFER”,他大叫一声。帮帮这个可怜的人吧,帮助他计算一下,他可以收到至少一份offer的最大概率。(如果Speakless选择了多个学校,得到任意一个学校的offer都可以)。
Input
输入有若干组数据,每组数据的第一行有两个正整数n,m(0<=n<=10000,0<=m<=10000)
后面的m行,每行都有两个数据ai(整型),bi(实型)分别表示第i个学校的申请费用和可能拿到offer的概率。
输入的最后有两个0。
Output
每组数据都对应一个输出,表示Speakless可能得到至少一份offer的最大概率。用百分数表示,精确到小数点后一位。
Sample Input
10 3 4 0.1 4 0.2 5 0.3 0 0
Sample Output
44.0%
Hint
You should use printf("%%") to print a '%'.
关键点:排列组合上面的转化。
转义字符的输出:// %%
如果说现在要找的是可能得到的至少一份offer的概率,那么这个问题的相对问题的就是一份offer都没有的概率,1减去相对问题的概率就是本题的答案。
现在如果问题进行了一个转化,那么本题也就简单地转化为了01背包问题。
相较于刚开始学习加减上升了一个档次(乘)。
后一部分->1-前面一个不被录取->前面一个被录取*1-当前被录取->被录取的最大概率
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+5;
const double eps = 1e-6;
const int INF = 0x3f3f3f3f;
typedef long long ll;
#define M(a,x) memset(a,x,sizeof(a))
#define AU(i,x,y) for(llt i=x;i<=y;i++)
//C(m,n)
int n,m;
float dp[10005];
int a[10005];
float b[10005];
int main()
{
ios::sync_with_stdio(false);
while(~scanf("%d%d",&n,&m)&&m+n)
{
M(a,0);
M(b,0);
M(dp,0);
for(int i=0;i<m;++i)
{
scanf("%d %f",&a[i],&b[i]);
}
for(int i=0;i<m;++i)
{
for(int j=n;j>=a[i];--j)
{
dp[j]=max(dp[j],(1-(1-dp[j-a[i]])*(1-b[i])));//被录取的最大
}
}
printf("%.1f%%\n",dp[n]*100);
}
return 0;
}