Introduction to Linear Algebra(5) Eigenvalue and Eigenvectors

在这里插入图片描述

Eigenvalues

The Eigenvalues of a triangular matrix are the entries on its main diagonal.
If v 1 , ⋯   , v r v_1,\cdots,v_r v1,,vr are eigenvectors that correspond to distinct eigenvalues λ 1 , ⋯   , λ r \lambda_1,\cdots,\lambda_r λ1,,λr of an n × n n\times n n×n matrix A A A, then the set { v 1 , ⋯   , v r } \{v_1,\cdots,v_r\} {v1,,vr} is linearly independent.

The characteristic equation

Let A be an n × n n \times n n×n matrix. Then A A A is invertible if and only if:
s.the number 0 is not a eigenvalues of A A A
t.the determinant of A A A is not zero

A scalar λ \lambda λ is an eigenvalue of an n × n n \times n n×n matrix A A A if and only if λ \lambda λ satisfies the characteristic equation d e t ( A − λ I ) = 0 det(A-\lambda I)=0 det(AλI)=0

Similarity

A A A is similar to B B B if there is an invertible matrix P P P that P − 1 A P = B P^{-1}AP=B P1AP=B
If n × n n \times n n×n matrix A A A and B B B are similar, then they have same characteristic polynomial and hence the same eigenvalues(with same multiplicities).

Diagonalization

An n × n n \times n n×n matrix A A A is diagoalizable if and only if A A A has n n n linearly independent eigenvectors.
In fact, A = P D P − 1 A= PDP^{-1} A=PDP1, with D D D a diagonal matrix, if and only if the columns of P P P are linearly independent eigenvectors of A A A. In this case, the diagonal entries of D D D are eigenvalues of A A A that correspond, respectively, to the eigenvectors in P P P.
An n × n n \times n n×n matrix with n n n distinct eigenvalues is diagonalizable
Let A A A ba an n × n n \times n n×n matrix whose distinct eigenvalues are λ 1 , ⋯   , λ p \lambda_1 , \cdots, \lambda_p λ1,,λp.
a. For 1 ≤ k ≤ p 1 \leq k \leq p 1kp, the dimension of the eigenspace for λ k \lambda_k λk is less than or equal to the multiplicity of the eigenvalue λ k \lambda_k λk.
b. The matrix A A A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n n n, and this happens if and only if ( i ) (i) (i) the characteristic polynomial factors completely into linear factors and ( i i ) (ii) (ii) the dimension of the eigenspace for each λ k \lambda_k λk equals the multiplicity of λ k \lambda_k λk
c. If A A A is diagonalizable and β k \beta_k βk is a basis for the eigenspace corresponding to λ k \lambda_k λk for each k k k, then the total collection of vactors in the sets β 1 , ⋯   , β p \beta_1,\cdots,\beta_p β1,,βp forms an eigenvectors basis for R n R^n Rn.

Eigenvectors and Linear Transformations

there are two vector space V V V R n R^n Rn and W W W R m R^m Rm, coordinate vector [ x ] β [x]_{\beta} [x]β is of R n R^n Rn and [ T ( x ) ] C [T(x)]_{C} [T(x)]C is in R m R^m Rm. b 1 , ⋯   , b n {b_1,\cdots,b_n} b1,,bn is the basis β \beta β for V V V. Then the matrix M = [ [ T ( b 1 ) ] c , ⋯   , [ T ( b n ) ] c ] M=[[T(b_1)]_c,\cdots,[T(b_n)]_c] M=[[T(b1)]c,,[T(bn)]c] The action
of T on X X X may be viewed as left-multiplication by M M M.

Linear Transformations on R n R^n Rn

Suppose A = P D P − 1 A=PDP^{-1} A=PDP1, where D D D is a diagonal n × n n\times n n×n matrix. If B B B is the basis for R n R^n Rn formed from the columns of P P P, then D D D is the β \beta βmatrix for the transformation x → A x x\rightarrow Ax xAx.

Similarity of Matrix Representattions

A = P C P − 1 A=PCP^{-1} A=PCP1

Iterative Estimates For Eigenvalues

If there is an power method applies to an n × n n \times n n×n matrix A A A with a strictly domaint eigenvalue λ 1 \lambda_1 λ1 meaning that λ 1 \lambda_1 λ1 must be larger in aboluate value than all the other eigenvalues. That is ∣ λ 1 ∣ > ∣ λ 2 ∣ ≥ ∣ l a m b d a 3 ∣ ⋯ ≥ ∣ λ n ∣ |\lambda_1|>|\lambda_2|\geq |lambda_3| \cdots \geq |\lambda_n| λ1>λ2lambda3λn Then through the below method it is easy for us to get a eigenvector:
1. Select an initial vector x 0 x_0 x0 whose largest entry is 1.
2. For k = 0 , 1 , ⋯   , k=0,1,\cdots, k=0,1,,
a.compute A x k Ax_k Axk
b.Let μ k \mu_k μk be an entry in A x k Ax_k Axk whose abolute value is as large as possible
c.Compute x k + 1 = ( 1 / μ k ) A x k x_{k+1}=(1/\mu_k)Ax_k xk+1=(1/μk)Axk
3. For almost all choices of x 0 x_0 x0, the sequence { μ k } \{\mu_k\} {μk} approaches the domaint eigenvalue, and the sequence { x k } \{x_k\} {xk} approaches a corresponding eigenvector.

The inverse Power Method For estimating An Eigenvalue λ \lambda λ Of A A A

  1. Select an initial estimate α \alpha α sufficiently close to λ \lambda λ
  2. select an initial vector x 0 x_0 x0 whose largest entry is 1
  3. For k = 0 , 1 , ⋯   , k = 0,1,\cdots, k=0,1,,
    a.slove ( A − α I ) y k = x k (A-\alpha I)y_k=x_k (AαI)yk=xk for y k y_k yk
    b.Let μ k \mu_k μk be an entry in y k y_k yk whose absolute value is as large as possible.
    c.Compute v k = α + ( 1 / μ k ) v_k=\alpha+(1/\mu_k) vk=α+(1/μk)
    d.Compute x k + 1 = ( 1 / μ k ) y k x_{k+1}=(1/\mu_k)y_k xk+1=(1/μk)yk
  4. For almost all choices of x 0 x_0 x0, the sequence { v k } \{v_k\} {vk} approaches the eigenvalue λ \lambda λ of A A A, and the sequence { x k } \{x_k\} {xk} approaches a corresponding eigenvector.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值