RTX3050ti、3060等系列显卡正确安装cuda、cudnn,配置Pytorch深度学习环境(避免由于版本不适应导致重装)

本文详细介绍了如何在RTX3050ti、3060等系列显卡上正确安装CUDA 11.1、cuDNN,并配置PyTorch的深度学习环境。首先,通过NVIDIA控制面板查看适配的CUDA版本,然后从PyTorch官网选择相应CUDA版本的PyTorch。接着,下载并安装CUDA,确保其自动添加到环境变量中。之后,下载并安装cuDNN,将其文件复制到CUDA安装目录。最后,添加环境变量,并通过Anaconda创建虚拟环境,安装PyTorch。验证CUDA和PyTorch安装成功后,即可使用GPU进行深度学习训练。
该文章已生成可运行项目,

RTX3050ti、3060等系列显卡正确安装cuda、cudnn,配置Pytorch深度学习环境(避免由于版本不适应导致重装)

如果你遇到以下问题,请认真看完,相信会有收获

GeForce RTX 3070 with CUDA capability sm_86 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 compute_37.
If you want to use the GeForce RTX 3070 GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/

warnings.warn(incompatible_device_warn.format(device_name, capability, " ".join(arch_list), device_name))

所需的下载准备

Anaconda、cuda、cudnn、Pytorch
anaconda与pycharm的使用可以参考我的上一篇博客:
重点介绍在rtx30系列安装正确版本

cuda、cudnn安装

cuda安装

如图所示,首先打开NVIDIA控制面板,点击帮助,查看系统信息,
在这里插入图片描述
查看结果如下图所示,我们可以适配的cuda时11.2版本,当然低版本的11.1也是ok的。
在这里插入图片描述
打开pytorch官网https://pytorch.org/get-started/locally/根据版本需求选择适合的pytorch版本。如下图所示,这里一定要选择cuda11.1版本的,如果选择cuda10.2,结果就是在使用深度学习训练时导致不适配。(血与泪的教训)

在这里插入图片描述
进入cuda安装官网,根据我的步骤来:https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述
在这里插入图片描述
下载后,安装我是一路默认,最后完成安装。
按照安装提示默认安装即可。 安装完成后,可以打开文件夹C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA,可以看到当前目录已经存在v11.1文件夹,表示已经成功安装cuda11.1版本,并且上述安装程序已经自动的向环境变量中添加了对应的cuda路径,使得后续pytorch可以正常调用和执行。

最后,测试一下cuda是否安装成功。打开cmd命令终端,然后输入命令:
nvcc -V
在这里插入图片描述

cudnn安装

这里读者会有疑问,cudnn是什么?为什么装了cuda了还要再装cudnn?

为了解释上述两个问题,我们需要重新梳理一下我们使用Pytorch的最终目标是什么?毫无疑问,我们是用它来进行深度学习训练和推理,深度学习本质上就是训练深度卷积神经网络。尽管我们已经可以用cuda使得显卡来完成并行计算任务,但是所有的操作还是比较底层的、复杂的。是否在cuda之上有一个专门用于深度神经网络的SDK库来加速完成相关特定的深度学习操作,答案就是cudnn。

NVIDIA cuDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开销。NVIDIA cuDNN可以集成到更高级别的机器学习框架中,如caffe、tensorflow、pytorch、mxnet等。cudnn简单的插入式设计可以让开发人员专注于设计和实现神经网络模型,而不是调整性能,同时还可以在GPU上实现高性能现代并行计算。

cudnn官网下载地址:https://developer.nvidia.com/cudnn,这里需要注册账号并填写相关个人信息,然后进才可以进入真正的下载页面,按照提示一步步操作即可。最终下载如图所示版本:
在这里插入图片描述
下载之后,解压缩,将CUDNN压缩包里面的bin、clude、lib文件直接复制到CUDA的安装目录下(C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1),直接覆盖安装即可完成。

添加环境变量

计算机属性>高级系统设置>环境变量:

在系统变量中新建下面的路径

CUDA_BIN_PATH: %CUDA_PATH%\bin

CUDA_LIB_PATH: %CUDA_PATH%\lib\x64

CUDA_SDK_PATH: C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.1

CUDA_SDK_BIN_PATH: %CUDA_SDK_PATH%\bin\win64

CUDA_SDK_LIB_PATH: %CUDA_SDK_PATH%\common\lib\x64
Note(注意):如果查不到ProgramData,就是在隐藏项目里,如图所示:
在这里插入图片描述

如图所示:在这里插入图片描述
编辑系统变量path,新建下面的的变量,确定。

%CUDA_BIN_PATH%

%CUDA_LIB_PATH%

%CUDA_SDK_BIN_PATH%

%CUDA_SDK_LIB_PATH%
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\lib\x64
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.1\common\lib\x64
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.1\bin\win64

步骤如图所示:
在这里插入图片描述
最后结果如图所示:在这里插入图片描述
至此,本节告一段落。下节更精彩。

安装Pytorch

首先,我们打开anaconda prompt
在这里插入图片描述

#创建虚拟环境:推荐使用python为3.6版本,比较稳定。
conda create -n pytorch-gpu python=3.6
#激活环境:
conda activate pytorch-gpu

开始讲到我们下载cuda11.1适配版本的pytorch,如图所示:
在这里插入图片描述
将选中的文字复制(conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge),打开anaconda prompt,运行conda activate pytorch-gpu,将环境切换至之前创建的pytorch-gpu环境。(左侧括号中显示pytorch-gpu则切换成功)
将复制的文字粘贴至cmd中,单击回车 ,由于安装量过大,这里建议大家使用fanqiang,可以很快下载(多试试几个节点)。
在这里插入图片描述
根据提示,输入y,等待安装结束。之后验证是否安装成功,输入python,再输入import torch,没有报错则安装成功,在验证gpu是否可用时,看其他一些博客写的通过以下命令是不能过验证cuda是否可以正常使用

import torch
# 我在pytorch-gpu的命令环境测试该命令 返回是True的,但是rtx30系列如果安装的cuda10.2版本在run torch程序的时候报错,因为rtx30系列并不支持cuda10.版本
torch.cuda.is_available()

那么我们用如下代码验证:

import torch
torch.zeros(1).cuda()
# 如果没有报错,表示可用,至此大功告成,在以后的项目中,就可以使用gpu来跑程序啦。
本文章已经生成可运行项目
<think>嗯,用户这次想为RTX4060Ti安装合适的CUDAcuDNN版本。从引用内容来看,虽然教程案例是RTX4070Ti,但显卡架构都是AdaLovelace,安装流程应该是通用的。用户可能正在搭建深度学习环境,需要具体版本指导。用户引用里特别提到RTX4060Ti,这是个重要细节。40系显卡目前建议用CUDA11.8或12.x,但具体要看用户要用的框架版本。引用[3]提到“显卡驱动->CUDA->cuDNN”的顺序很关键,这个流程必须严格执行。注意到引用[4]的ubuntu案例中用了CUDA11.3,但那是搭配旧版PyTorch的。对于新卡,应该优先考虑更高版本。用户没说明操作系统,但引用里都是Windows案例,所以先按win11准备方案。安装难点在于版本兼容性:显卡驱动版本决定支持的最高CUDA版本,而CUDA版本又限制cuDNN选择。建议用户先查NVIDIA控制面板的驱动信息,这是后续所有操作的基础。另外要强调cuDNN文件复制的操作容易出错,引用[2]提到的复制bin/include/lib目录是关键步骤。考虑到用户可能刚接触环境搭建,应该提醒两个重点:一是安装CUDA时要勾选全部组件(特别容易漏VisualStudio集成),二是cuDNN验证必须运行bandwidthTest.exe和deviceQuery.exe两个测试程序。最后补充环境变量配置的典型路径,避免用户找安装目录。</think> 以下是为 NVIDIA GeForce RTX 4060 Ti 安装适配的 CUDAcuDNN 的完整指南,结合引用内容整理关键步骤: --- ### **安装流程概述** ```mermaid graph TD A[检查显卡驱动] --> B[下载CUDA] B --> C[安装CUDA] C --> D[安装cuDNN] D --> E[验证安装] ``` --- ### **详细步骤** #### **1. 检查显卡驱动(必须首先完成)** - 打开 **NVIDIA 控制面板** > 点击左下角 **系统信息** - 确认 **驱动程序版本** 需≥ **526.47**(这是RTX 40系显卡的最低要求) - 若需更新: - 通过 GeForce Experience 自动更新 - 或从 [NVIDIA驱动下载页](https://www.nvidia.cn/Download/index.aspx) 手动下载 > 📌 *关键提示:驱动支持的CUDA版本通常在系统信息中显示(如`CUDA 12.3`)* #### **2. 下载适配的CUDA版本** - RTX 4060 Ti **推荐安装**: - **CUDA 12.x** (最新稳定版) - **CUDA 11.8** (若需兼容PyTorch/TensorFlow旧版) - 官网下载地址: [https://developer.nvidia.com/cuda-toolkit-archive](https://developer.nvidia.com/cuda-toolkit-archive) - **选择建议**: - 若开发框架要求明确 → 选 **CUDA 12.2+** - 若需兼容旧版PyTorch(1.x)→ 选 **CUDA 11.8** #### **3. 安装CUDA** 1. 运行下载的CUDA安装包(如`cuda_12.2.0_windows.exe`) 2. **安装选项关键配置**: - 选择 **自定义安装** - ✅ 勾选所有组件(尤其确保`CUDA/Development`) - ❌ **取消勾选** `Visual Studio Integration`(避免版本冲突)[^2] 3. 完成安装后: - 验证环境变量: `PATH` 中应包含: ``` C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2\bin C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2\libnvvp ``` #### **4. 安装cuDNN** - **版本选择原则**: cuDNN 版本必须 **完全匹配CUDA版本号** ``` CUDA 12.x → cuDNN ≥ 8.9.x CUDA 11.x → cuDNN ≥ 8.6.x ``` - **安装步骤**: 1. 从 [NVIDIA cuDNN下载页](https://developer.nvidia.com/cudnn) 下载(需注册账号) 2. 解压下载的ZIP文件(如`cudnn-windows-x86_64-8.9.4.25_cuda12-archive.zip`) 3. **覆盖复制**以下文件夹到CUDA安装目录: ``` 将 \cudnn-*\bin\* → 复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.x\bin 将 \cudnn-*\include\* → 复制到 ...\CUDA\v12.x\include 将 \cudnn-*\lib\* → 复制到 ...\CUDA\v12.x\lib\x64 ``` #### **5. 验证安装** - **CUDA验证**: ```powershell nvcc --version # 应显示如"Cuda compilation tools, release 12.2" ``` - **cuDNN验证**: ```powershell # 进入CUDA示例工具目录 cd "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2\extras\demo_suite" .\bandwidthTest.exe # 显示 Result = PASS .\deviceQuery.exe # 输出中应有 cuDNN Version: 8.9.x ``` --- ### **版本搭配建议** | 开发框架 | 推荐CUDA | 推荐cuDNN | |----------------|----------|-----------| | PyTorch ≥ 2.0 | 12.x | ≥ 8.9.5 | | TensorFlow ≥ 2.10 | 11.8/12.x| ≥ 8.6/8.9 | | CUDA原生开发 | 12.2+ | 匹配最新版 | > 💡 *提示:若需PyTorch/TensorFlow支持,务必查看其官方文档的CUDA兼容表[^4]* --- ### **注意事项** 1. 安装前关闭所有杀毒软件(避免误报拦截) 2. 确保CUDA/cuDNN版本**严格对应** 3. 建议使用 **Python虚拟环境** 避免依赖冲突 4. 若安装失败: - 检查 `PATH` 环境变量顺序(CUDA路径应在最前) - 卸载后重启再重装(使用DDU工具彻底清除旧驱动) ---
评论 31
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值