LRU Cache的实现

1 概念

Cache,即高速缓存,是介于CPU和内存之间的高速小容量存储器。在金字塔式存储体系中它位于自顶向下的第二层,仅次于CPU寄存器。其容量远小于内存,但速度却可以接近CPU的频率。

当CPU发出内存访问请求时,会先查看 Cache 内是否有请求数据。

  • 如果存在(命中),则直接返回该数据;
  • 如果不存在(失效),再去访问内存 —— 先把内存中的相应数据载入缓存,再将其返回处理器。

提供“高速缓存”的目的是让数据访问的速度适应CPU的处理速度,通过减少访问内存的次数来提高数据存取的速度。

2 原理

Cache 技术所依赖的原理是”程序执行与数据访问的局部性原理“,这种局部性表现在两个方面:

  1. 时间局部性:如果程序中的某条指令一旦执行,不久以后该指令可能再次执行,如果某数据被访问过,不久以后该数据可能再次被访问。
  2. 空间局部性:一旦程序访问了某个存储单元,在不久之后,其附近的存储单元也将被访问,即程序在一段时间内所访问的地址,可能集中在一定的范围之内,这是因为指令或数据通常是顺序存放的。

时间局部性是通过将近来使用的指令和数据保存到Cache中实现。空间局部性通常是使用较大的高速缓存,并将 预取机制 集成到高速缓存控制逻辑中来实现。

3 替换策略

Cache的容量是有限的,当Cache的空间都被占满后,如果再次发生缓存失效,就必须选择一个缓存块来替换掉。常用的替换策略有以下几种:

  1. 随机算法(Rand):随机法是随机地确定替换的存储块。设置一个随机数产生器,依据所产生的随机数,确定替换块。这种方法简单、易于实现,但命中率比较低。

  2. 先进先出算法(FIFO, First In First Out):先进先出法是选择那个最先调入的那个块进行替换。当最先调入并被多次命中的块,很可能被优先替换,因而不符合局部性规律。这种方法的命中率比随机法好些,但还不满足要求。

  3. 最久未使用算法(LRU, Least Recently Used):LRU法是依据各块使用的情况, 总是选择那个最长时间未被使用的块替换。这种方法比较好地反映了程序局部性规律。

  4. 最不经常使用算法(LFU, Least Frequently Used):将最近一段时期内,访问次数最少的块替换出Cache。

4 概念的扩充

如今高速缓存的概念已被扩充,不仅在CPU和主内存之间有Cache,而且在内存和硬盘之间也有Cache(磁盘缓存),乃至在硬盘与网络之间也有某种意义上的Cache──称为Internet临时文件夹或网络内容缓存等。凡是位于速度相差较大的两种硬件之间,用于协调两者数据传输速度差异的结构,均可称之为Cache。

5  思路分析

对一个Cache的操作无非三种:插入(insert)、替换(replace)、查找(lookup)。

为了能够快速删除最久没有访问的数据项和插入最新的数据项,我们使用 双向链表 连接Cache中的数据项,并且保证链表维持数据项从最近访问到最旧访问的顺序。

  • 插入:当Cache未满时,新的数据项只需插到双链表头部即可。时间复杂度为 O(1) .

  • 替换:当Cache已满时,将新的数据项插到双链表头部,并删除双链表的尾结点即可。时间复杂度为 O(1) .

  • 查找:每次数据项被查询到时,都将此数据项移动到链表头部。

经过分析,我们知道使用双向链表可以保证插入和替换的时间复杂度是 O(1) ,但查询的时间复杂度是 O(n) ,因为需要对双链表进行遍历。为了让查找效率也达到 O(1) ,很自然的会想到使用 hash table 。

      简单的说,就是保证基本的get和set的功能的同时,还要保证最近访问(get或put)的节点保持在限定容量的Cache中,如果超过容量则应该把LRU(近期最少使用)的节点删除掉。

那么我们思考一个问题:如何设计实现一个LRU Cache?
那么,我们可能需要使用类似这样的数据结构去实现这个LRU Cache:

这不就是LinkedHashMap吗!
这样做的好处是,getset在不冲突的情况下可以保证O(1)的复杂度,同时,也可以通过双向链表来保证LRU的删除更新操作也能保证O(1)的复杂度。


2 代码实现

从上述分析可知,我们需要使用两种数据结构

  1. 双向链表(Doubly Linked List)
  2. 哈希表(Hash Table)

在学习了HashMap(#7 )和LinkedHashMap(#8 )后,是不是觉得这俩数据结构简直太适合做LRU Cache了!那么动手实现一下:
基于HashMap和双向链表的实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
public class LRUCache {
     class Node {
         Node pre;
         Node next;
         Integer key;
         Integer val;
 
         Node(Integer k, Integer v) {
             key = k;
             val = v;
         }
     }
 
     Map<Integer, Node> map = new HashMap<Integer, Node>();
     // The head (eldest) of the doubly linked list.
     Node head;
     // The tail (youngest) of the doubly linked list.
     Node tail;
     int cap;
     public LRUCache( int capacity) {
         cap = capacity;
         head = new Node( null , null );
         tail = new Node( null , null );
         head.next = tail;
         tail.pre = head;
     }
 
     public int get( int key) {
         Node n = map.get(key);
         if (n!= null ) {
             n.pre.next = n.next;
             n.next.pre = n.pre;
             appendTail(n);
             return n.val;
         }
         return - 1 ;
     }
 
     public void set( int key, int value) {
         Node n = map.get(key);
         // existed
         if (n!= null ) {
             n.val = value;
             map.put(key, n);
             n.pre.next = n.next;
             n.next.pre = n.pre;
             appendTail(n);
             return ;
         }
         // else {
         if (map.size() == cap) {
             Node tmp = head.next;
             head.next = head.next.next;
             head.next.pre = head;
             map.remove(tmp.key);
         }
         n = new Node(key, value);
         // youngest node append taill
         appendTail(n);
         map.put(key, n);
     }
 
     private void appendTail(Node n) {
         n.next = tail;
         n.pre = tail.pre;
         tail.pre.next = n;
         tail.pre = n;
     }
}

基于LinkedHashMap的实现
HashMap+双向链表?这不就是LinkedHashMap吗!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public class LRUCache {
 
     private int capacity;
     private Map<Integer, Integer> cache;
 
     public LRUCache( int capacity) {
         this .capacity = capacity;
         this .cache = new java.util.LinkedHashMap<Integer, Integer> (capacity, 0 .75f, true ) {
             // 定义put后的移除规则,大于容量就删除eldest
             protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {
                 return size() > capacity;
             }
         };
     }
 
     public int get( int key) {
         if (cache.containsKey(key)) {
             return cache.get(key);
         } else
             return - 1 ;
     }
 
     public void set( int key, int value) {
         cache.put(key, value);
     }
}

 


LRU Cache是一种常见的缓存淘汰策略,LRU代表最近最少使用。在Java中,可以使用不同的方式来实现LRU Cache。 引用\[1\]中的代码展示了一种自定义的LRU Cache实现,使用了一个自定义的LRUCache类,并在main方法中进行了测试。在这个实现中,LRUCache类继承了LinkedHashMap,并重写了removeEldestEntry方法来实现缓存的淘汰策略。 引用\[2\]中的代码展示了另一种自定义的LRU Cache实现,同样使用了一个自定义的LRUCache类,并在main方法中进行了测试。这个实现中,LRUCache类同样继承了LinkedHashMap,并重写了removeEldestEntry方法来实现缓存的淘汰策略。 引用\[3\]中的代码展示了使用ArrayList实现LRU Cache的方式。在这个实现中,LRUCache类使用了一个ArrayList来存储缓存数据,并通过get和put方法来操作缓存。 总结来说,LRU Cache的Java实现可以使用自定义的类继承LinkedHashMap并重写removeEldestEntry方法,或者使用ArrayList来存储缓存数据。具体的实现方式可以根据需求和偏好选择。 #### 引用[.reference_title] - *1* *2* [Java——LRUCache](https://blog.csdn.net/m0_60867520/article/details/128361042)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [LRUCache的Java实现](https://blog.csdn.net/qq_39383118/article/details/103535985)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

17奋斗8

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值