1 概念
Cache,即高速缓存,是介于CPU和内存之间的高速小容量存储器。在金字塔式存储体系中它位于自顶向下的第二层,仅次于CPU寄存器。其容量远小于内存,但速度却可以接近CPU的频率。
当CPU发出内存访问请求时,会先查看 Cache 内是否有请求数据。
- 如果存在(命中),则直接返回该数据;
- 如果不存在(失效),再去访问内存 —— 先把内存中的相应数据载入缓存,再将其返回处理器。
提供“高速缓存”的目的是让数据访问的速度适应CPU的处理速度,通过减少访问内存的次数来提高数据存取的速度。
2 原理
Cache 技术所依赖的原理是”程序执行与数据访问的局部性原理“,这种局部性表现在两个方面:
- 时间局部性:如果程序中的某条指令一旦执行,不久以后该指令可能再次执行,如果某数据被访问过,不久以后该数据可能再次被访问。
- 空间局部性:一旦程序访问了某个存储单元,在不久之后,其附近的存储单元也将被访问,即程序在一段时间内所访问的地址,可能集中在一定的范围之内,这是因为指令或数据通常是顺序存放的。
时间局部性是通过将近来使用的指令和数据保存到Cache中实现。空间局部性通常是使用较大的高速缓存,并将 预取机制 集成到高速缓存控制逻辑中来实现。
3 替换策略
Cache的容量是有限的,当Cache的空间都被占满后,如果再次发生缓存失效,就必须选择一个缓存块来替换掉。常用的替换策略有以下几种:
-
随机算法(Rand):随机法是随机地确定替换的存储块。设置一个随机数产生器,依据所产生的随机数,确定替换块。这种方法简单、易于实现,但命中率比较低。
-
先进先出算法(FIFO, First In First Out):先进先出法是选择那个最先调入的那个块进行替换。当最先调入并被多次命中的块,很可能被优先替换,因而不符合局部性规律。这种方法的命中率比随机法好些,但还不满足要求。
-
最久未使用算法(LRU, Least Recently Used):LRU法是依据各块使用的情况, 总是选择那个最长时间未被使用的块替换。这种方法比较好地反映了程序局部性规律。
-
最不经常使用算法(LFU, Least Frequently Used):将最近一段时期内,访问次数最少的块替换出Cache。
4 概念的扩充
如今高速缓存的概念已被扩充,不仅在CPU和主内存之间有Cache,而且在内存和硬盘之间也有Cache(磁盘缓存),乃至在硬盘与网络之间也有某种意义上的Cache──称为Internet临时文件夹或网络内容缓存等。凡是位于速度相差较大的两种硬件之间,用于协调两者数据传输速度差异的结构,均可称之为Cache。
5 思路分析
对一个Cache的操作无非三种:插入(insert)、替换(replace)、查找(lookup)。
为了能够快速删除最久没有访问的数据项和插入最新的数据项,我们使用 双向链表 连接Cache中的数据项,并且保证链表维持数据项从最近访问到最旧访问的顺序。
-
插入:当Cache未满时,新的数据项只需插到双链表头部即可。时间复杂度为 O(1) .
-
替换:当Cache已满时,将新的数据项插到双链表头部,并删除双链表的尾结点即可。时间复杂度为 O(1) .
-
查找:每次数据项被查询到时,都将此数据项移动到链表头部。
经过分析,我们知道使用双向链表可以保证插入和替换的时间复杂度是 O(1) ,但查询的时间复杂度是 O(n) ,因为需要对双链表进行遍历。为了让查找效率也达到 O(1) ,很自然的会想到使用 hash table 。
简单的说,就是保证基本的get和set的功能的同时,还要保证最近访问(get或put)的节点保持在限定容量的Cache中,如果超过容量则应该把LRU(近期最少使用)的节点删除掉。
那么我们思考一个问题:如何设计实现一个LRU Cache?
那么,我们可能需要使用类似这样的数据结构去实现这个LRU Cache:
这不就是LinkedHashMap吗!
这样做的好处是,get
和set
在不冲突的情况下可以保证O(1)的复杂度,同时,也可以通过双向链表来保证LRU的删除
和更新
操作也能保证O(1)的复杂度。
2 代码实现
从上述分析可知,我们需要使用两种数据结构:
- 双向链表(Doubly Linked List)
- 哈希表(Hash Table)
在学习了HashMap(#7 )和LinkedHashMap(#8 )后,是不是觉得这俩数据结构简直太适合做LRU Cache了!那么动手实现一下:
基于HashMap和双向链表的实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
public
class
LRUCache {
class
Node {
Node pre;
Node next;
Integer key;
Integer val;
Node(Integer k, Integer v) {
key = k;
val = v;
}
}
Map<Integer, Node> map =
new
HashMap<Integer, Node>();
// The head (eldest) of the doubly linked list.
Node head;
// The tail (youngest) of the doubly linked list.
Node tail;
int
cap;
public
LRUCache(
int
capacity) {
cap = capacity;
head =
new
Node(
null
,
null
);
tail =
new
Node(
null
,
null
);
head.next = tail;
tail.pre = head;
}
public
int
get(
int
key) {
Node n = map.get(key);
if
(n!=
null
) {
n.pre.next = n.next;
n.next.pre = n.pre;
appendTail(n);
return
n.val;
}
return
-
1
;
}
public
void
set(
int
key,
int
value) {
Node n = map.get(key);
// existed
if
(n!=
null
) {
n.val = value;
map.put(key, n);
n.pre.next = n.next;
n.next.pre = n.pre;
appendTail(n);
return
;
}
// else {
if
(map.size() == cap) {
Node tmp = head.next;
head.next = head.next.next;
head.next.pre = head;
map.remove(tmp.key);
}
n =
new
Node(key, value);
// youngest node append taill
appendTail(n);
map.put(key, n);
}
private
void
appendTail(Node n) {
n.next = tail;
n.pre = tail.pre;
tail.pre.next = n;
tail.pre = n;
}
}
|
基于LinkedHashMap的实现
HashMap+双向链表?这不就是LinkedHashMap吗!
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
public
class
LRUCache {
private
int
capacity;
private
Map<Integer, Integer> cache;
public
LRUCache(
int
capacity) {
this
.capacity = capacity;
this
.cache =
new
java.util.LinkedHashMap<Integer, Integer> (capacity,
0
.75f,
true
) {
// 定义put后的移除规则,大于容量就删除eldest
protected
boolean
removeEldestEntry(Map.Entry<Integer, Integer> eldest) {
return
size() > capacity;
}
};
}
public
int
get(
int
key) {
if
(cache.containsKey(key)) {
return
cache.get(key);
}
else
return
-
1
;
}
public
void
set(
int
key,
int
value) {
cache.put(key, value);
}
}
|