PyTorch 深度学习实践 第5讲

import torch
import matplotlib.pyplot as plt
#构造数据。x,y都是二维数组,三行一列
x_data=torch.tensor([[1.0],[2.0],[3.0]])
y_data=torch.tensor([[2.0],[4.0],[6.0]])
#定义线性模型类
class LineaeModel(torch.nn.Module):
    def __init__(self):#初始化
        super(LineaeModel,self).__init__()#继承
        self.linear=torch.nn.Linear(1,1)#创建线性层,输入特征的数量和输出特征的数量。一个输入特征x,一个输出特征y
        #在这个线性层中,权重(w)和偏置(b)会被随机初始化。权重和偏置是模型需要学习的参数,它们会在训练过程中自动调整,以使模型能够拟合训练数据并最小化损失函数。
    def forward(self,x):#预测函数
        y_pred=self.linear(x)
        return y_pred

model=LineaeModel()#实例化
losses=[]
weights = []  # 存储权重
biases = []  # 存储偏置

# 打印初始权重和偏置
print("初始权重 (w):", model.linear.weight.item())
print("初始偏置 (b):", model.linear.bias.item())

criterion=torch.nn.MSELoss(reduction="sum")#定义损失函数的参数,计算所有损失项的和
optimizer=torch.optim.SGD(model.parameters(),lr=0.01) #设置优化器

for epoch in range(100):
    y_pre=model(x_data)#预测得到y_pre
    loss=criterion(y_pre,y_data)#得到损失值
    print("epoch:",epoch," loss:",loss.item())
    losses.append(loss.item())
    optimizer.zero_grad()#梯度清零
    loss.backward()#反向计算梯度
    optimizer.step()#优化器更新
    print("权重 (w):", model.linear.weight.item())
    print("偏置 (b):", model.linear.bias.item())
    weights.append(model.linear.weight.item())
    biases.append(model.linear.bias.item())

print("最终w= ",model.linear.weight.item())
print("最终b= ",model.linear.bias.item())

x_test=torch.tensor([4.0])
y_test=model(x_test)
print("y_pre=",y_test.data)

#绘制损失曲线
plt.plot(range(100),losses)
plt.ylabel("loss")
plt.xlabel("epoch")
#plt.show()

# 绘制权重和偏置变化曲线
plt.plot(range(100), weights, label="weight")
plt.plot(range(100), biases, label="bias")
plt.legend()
plt.ylabel("value")
plt.xlabel("epoch")
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值