计算机的源码,反码,补码,以及0xff的应用

重点:计算机内的存储都是利用二进制的补码进行存储的。
1.机械数 ------> 一个数在计算机中的二进制表现形式

 5   的机械数为[000000101]
-5  的机械数为[10000101]
由此可知:最高位表示符号(-,+)

2.真值 --------> 带符号位的机械数的真正数值

[00000101] 的真值为 +0000101=+5
[10000101] 的真值为  -0000101= -5

3.源码

[+3]原 为 [00000011]
[-3]原 为 [10000011]
所以源码的取值范围为 [ 01111111 , 11111111 ]
即:[ -127 , 127 ]

4.反码

除了符号位不变,其他位取反(正数的反码是它本身)
 [+1] = [00000001]原 = [00000001]反
 [-1] = [10000001]原 = [11111110]反

5.补码

负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)正数的补码就是其本身
[+1] = [00000001]原 = [00000001]反 = [00000001]补
[-1] = [10000001]原 = [11111110]反 = [11111111]补
对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.

6.为何要使用原码, 反码和补码

现在我们知道了计算机可以有三种编码方式表示一个数. 对于正数因为三种编码方式的结果都相同:

[+1] = [00000001]原 = [00000001]反 = [00000001]补

所以不需要过多解释. 但是对于负数:

[-1] = [10000001]原 = [11111110]反 = [11111111]补

可见原码, 反码和补码是完全不同的. 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?

首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减. (真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法.
我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了.

于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2

如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数.

为了解决原码做减法的问题, 出现了反码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0

发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在"0"这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]原和[1000 0000]原两个编码表示0.

于是补码的出现, 解决了0的符号以及两个编码的问题:

1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原

这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128:

(-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]补 + [1000 0001]补 = [1000 0000]补

-1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000]补 就是-128. 但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码的表示.(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000]原, 这是不正确的)

使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127].

转载:https://blog.csdn.net/cmd_cong/article/details/53771193#commentBox

7.&0xff一般应用在字节转16进制字符串时
(1)为什么要用16进制字符串

16进制字符串的作用主要是便于查看,每个字节必然是两位字符。 
如果不转换的话,字付中很多都是不可见字符,可能导致显示错乱,甚至被系统错误的解码。

(2)&0xff应用情景

MessageDigest md5 = MessageDigest.getInstance("MD5");
// 将加密字符串转换为字符数组
  byte[] byteArray = "字符串".getBytes();
  // 开始加密
  byte[] digest = md5.digest(byteArray);
  StringBuilder sb = new StringBuilder();
  for (int i = 0; i < digest.length; i++) {
   	int var = digest[i] & 0xff;
   	if (var < 16)
    	sb.append("0");
   sb.append(Integer.toHexString(var));
  }

byte(8位的字节)转换成16进制字符串之前先要转换成int类型的32位的字节
转换规则:正数补0,负数补1
+5->[00000101]---->[00000000 00000000 00000000 00000101]
-5–>[11111011]---->[11111111 11111111 11111111 11111011](根据补码推算源码进行10进制换算,结果不影响,
但是:二进制本来是[111111011],无缘无故的多了这么多1,二进制补码已经不一致啦

在此基础上进行转16进制字符串,16进制的0~15表示为[0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f]
即:
[00000101]=5—>5
[00001100]=12---->c(0000–>没有对应,1100–>12=c)
[00100101]=37----->25(0010–>2 , 0101–>5)
那么当一个byte会转换成int时,对于负数,会做位扩展,举例来说,一个byte的-1(即0xff),会被转换成int的-1(即0xffffffff),那么转化出的结果就不是我们想要的了。
所以:上面的两个32位的字节转换的结果为:5 和 fffffffb(这么多f,好繁琐)(我们想要的结果是后两位–>fb)前面的f是没有用的
此时引入0xff,0xff的2进制为[11111111]
即:

  11111111 11111111 11111111 11111011
& 					
  00000000 00000000 00000000 11111111

= 00000000 00000000 00000000 11111011

&0xff可以将高的24位置为0,低8位保持原样。这样做的目的就是为了保证二进制数据的一致性

如果二进制被当作byte和int来解读,其10进制的值必然是不同的,因为符号位位置已经发生了变化。
例如:

-127 & 0xFF=
	11111111 11111111 111111111 10000001 & 11111111
	=00000000 00000000 00000000 10000001 (此时最高位的1已经不表示符号了)
	求其10进制的结果为 129

上面的代码if (var < 16) 的意义位:如果字节转换成10进制<16,即字节的范围为[00001111,00000000]转换成16进制的字符串只会产生一个字符,与每个字节对应两个字符不匹配,所以在前加上一个0,这样工整,协调

参考:https://www.cnblogs.com/think-in-java/p/5527389.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值