题意:n个数在一个双端队列中,每次从队首或队尾出。出的第n个数乘以n,最后加起来,求最大和。
用d[i][j]代表队列中的队首元素为i,队尾元素为j的最大和。所以d[i][j]=max(d[i-1][j]+a[i-1]*(n-j+i-1),d[i][j+1]+a[i][j+1]*(n-j+i-1)),当前处理的第(n-j+i-1)个点。最后d[i][i]代表只剩第I个数时的最大值,所以得自加a[i]*n处理,遍历求最大值就行。
#include <iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#define N 2200
using namespace std;
int d[N][N],a[N];
int main()
{
int n;
while(~scanf("%d",&n))
{
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
a[0]=a[n+1]=0;
for(int i=1;i<=n;i++)
for(int j=n;j>=i;j--)
d[i][j]=max(d[i-1][j]+a[i-1]*(n-j+i-1),d[i][j+1]+a[j+1]*(n-j+i-1));
int mmax=0;
for(int i=1;i<=n;i++)
{
d[i][i]+=a[i]*n;
mmax=max(d[i][i],mmax);
}
cout<<mmax<<endl;
}
}