分类算法————sklearn转换器和估计器

目录

1 转换器-特征工程的父类

2 估计器(sklearn机器学习算法的实现)

3 sklearn模型的保存和加载API


1 转换器-特征工程的父类

把特征工程的接口称之为转换器

  • fit_transform()    两个函数的封装
  • fit      做计算
  • transform     进行最终的转换

2 估计器(sklearn机器学习算法的实现)

  • 1、用于分类的估计器:
    • sklearn.neighbors          k-近邻算法
    • sklearn.naive_bayes      贝叶斯
    • sklearn.linear_model.LogisticRegression   逻辑回归
    • sklearn.tree    决策树与随机森林
  • 2、用于回归的估计器:
    • sklearn.linear_model.LinearRegression    线性回归
    • sklearn.linear_model.Ridge       岭回归
  • 3、用于无监督学习的估计器
    • sklearn.cluster.KMeans          聚类

估计器(estimator)工作流程:
1. 实例化一个estimator

2.计算模型训练 estimator.fit(x_tran,y_train)

3.模型评估:

        1)直接比对真实值与预测值 y_predict=estimator.predict(x_test)

                y_test==y_prdeict

        2) 直接计算准确率

     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值