目录
1 转换器-特征工程的父类
把特征工程的接口称之为转换器
- fit_transform() 两个函数的封装
- fit 做计算
- transform 进行最终的转换
2 估计器(sklearn机器学习算法的实现)
- 1、用于分类的估计器:
- sklearn.neighbors k-近邻算法
- sklearn.naive_bayes 贝叶斯
- sklearn.linear_model.LogisticRegression 逻辑回归
- sklearn.tree 决策树与随机森林
- 2、用于回归的估计器:
- sklearn.linear_model.LinearRegression 线性回归
- sklearn.linear_model.Ridge 岭回归
- 3、用于无监督学习的估计器
- sklearn.cluster.KMeans 聚类
估计器(estimator)工作流程:
1. 实例化一个estimator
2.计算模型训练 estimator.fit(x_tran,y_train)
3.模型评估:
1)直接比对真实值与预测值 y_predict=estimator.predict(x_test)
y_test==y_prdeict
2) 直接计算准确率