太空飞行计划
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
W 教授正在为国家航天中心计划一系列的太空飞行。每次太空飞行可进行一系列商业性实验而获取利润。现已确定了一个可供选择的实验集合E={E1,E2,…,Em},和进行这些实验需要使用的全部仪器的集合I={I1,I2,…In}。实验Ej需要用到的仪器是I的子集Rj 。配置仪器Ik的费用为ck美元。实验Ej的赞助商已同意为该实验结果支付pj美元。W教授的任务是找出一个有效算法,确定在一次太空飞行中要进行哪些实验并因此而配置哪些仪器才能使太空飞行的净收益最大。这里净收益是指进行实验所获得的全部收入与配置仪器的全部费用的差额。对于给定的实验和仪器配置情况,编程找出净收益最大的试验计划。
-
输入
-
多组测试数据(不超过500组)
每组数据第1行有2 个正整数m和n(m,n <= 100)。m是实验数,n是仪器数。接下来的m 行,每行是一个实验的有关数据。第一个数赞助商同意支付该实验的费用f(f < 10000);接着是该实验需要用到的仪器的个数t,接着是t个仪器的编号。最后一行的n个数是配置每个仪器的费用pi(pi <=100)。
输出
- 每组数据输出占一行,输出最大的净收益(如果无法收益,输出0)。 样例输入
-
2 3 10 2 1 2 25 2 2 3 5 6 7
样例输出
-
17
-
多组测试数据(不超过500组)
题目可以再这里提交:http://wikioi.com/homework/23/
应该是一题SPJ的。
分析:最大权闭合图,求完最小割后dfs(S),左边的A集合就是一个解。
代码:
//Isap算法,复杂度O(n^2m)
#pragma comment(linker,"/STACK:102400000,102400000")
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <string>
#include <math.h>
#include <queue>
#include <stack>
#include <map>
#include <set>
using namespace std;
typedef long long ll; //记得必要的时候改成无符号
const int maxn=505;
const int maxm=1000005;
const int INF=1000000000;
struct EdgeNode
{
int from;
int to;
int cap;
int cost;
int next;
}edge[maxm];
int head[maxn],cnt;
void add(int x,int y,int z)
{
edge[cnt].from=x;edge[cnt].to=y;edge[cnt].cap=z;edge[cnt].cost=z;edge[cnt].next=head[x];head[x]=cnt++;
edge[cnt].from=y;edge[cnt].to=x;edge[cnt].cap=0;edge[cnt].cost=0;edge[cnt].next=head[y];head[y]=cnt++;
//printf("%d %d %d\n",x,y,z);
}
void init()
{
cnt=0;
memset(head,-1,sizeof(head));
}
int S,T,n,m;
int d[maxn],gap[maxn],curedge[maxn],pre[maxn];
//curedge[]为当前弧数组,pre为前驱数组
int sap(int S,int T,int n) //n为点数
{
int cur_flow,flow_ans=0,u,tmp,neck,i;
memset(d,0,sizeof(d));
memset(gap,0,sizeof(gap));
memset(pre,-1,sizeof(pre));
for(i=0;i<=n;i++)curedge[i]=head[i]; //初始化当前弧为第一条邻接表
gap[0]=n;
u=S;
while(d[S]<n) //当d[S]>=n时,网络中肯定出现了断层
{
if(u==T)
{
cur_flow=INF;
for(i=S;i!=T;i=edge[curedge[i]].to)
{ //增广成功,寻找瓶颈边
if(cur_flow>edge[curedge[i]].cost)
{
neck=i;
cur_flow=edge[curedge[i]].cost;
}
}
for(i=S;i!=T;i=edge[curedge[i]].to)
{ //修改路径上的边容量
tmp=curedge[i];
edge[tmp].cost-=cur_flow;
edge[tmp^1].cost+=cur_flow;
}
flow_ans+=cur_flow;
u=neck; //下次增广从瓶颈边开始
}
for(i=curedge[u];i!=-1;i=edge[i].next)
if(edge[i].cost&&d[u]==d[edge[i].to]+1)
break;
if(i!=-1)
{
curedge[u]=i;
pre[edge[i].to]=u;
u=edge[i].to;
}
else
{
if(0==--gap[d[u]])break; //gap优化
curedge[u]=head[u];
for(tmp=n,i=head[u];i!=-1;i=edge[i].next)
if(edge[i].cost)
tmp=min(tmp,d[edge[i].to]);
d[u]=tmp+1;
++gap[d[u]];
if(u!=S)u=pre[u]; //重标号并且从当前点前驱重新增广
}
}
return flow_ans;
}
int chu1[maxn],chu2[maxn],ans1,ans2,ma[maxn][maxn];
bool vis[maxn],xuan[maxn];
void dfs(int u)
{
vis[u]=1;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(vis[v]==0&&edge[i].cost)dfs(v);
}
}
int main()
{
int i,j,x,y,z,sum,ans;
char s[10005];
while(~scanf("%d%d",&n,&m))
{
sum=0;
init(); S=0; T=n+m+1;
for(i=1;i<=n;i++){
ans=0;
scanf("%d",&z); add(S,i,z); sum+=z;
gets(s);
int len=strlen(s);
x=0;
for(j=1;j<len;j++){
if(s[j]==' '){
add(i,n+x,INF);
x=0;
}
else x=x*10+s[j]-'0';
}
if(x!=0){
add(i,n+x,INF);
}
}
for(i=1;i<=m;i++){
scanf("%d",&z);
add(n+i,T,z);
}
ans=sap(S,T,T+1);
memset(vis,0,sizeof(vis));
memset(xuan,0,sizeof(xuan));
dfs(S);
ans1=ans2=0;
for(i=1;i<=n;i++)if(vis[i])chu1[ans1++]=i;
for(i=n+1;i<=n+m;i++)if(vis[i])chu2[ans2++]=i-n;
for(i=0;i<ans1;i++){
if(i==0)printf("%d",chu1[i]);
else printf(" %d",chu1[i]);
}
printf("\n");
for(i=0;i<ans2;i++){
if(i==0)printf("%d",chu2[i]);
else printf(" %d",chu2[i]);
}
printf("\n");
printf("%d\n",sum-ans);
}
return 0;
}