(二)、传热学-稳态热传导的规律及计算

1、温度场

分为稳态温度场和非稳态温度场,t=f\left( x,y,z,\tau \right)

2、等温线

同一瞬间相同温度各点连成得面称为等温面。任意二维得截面上等温面表现为等温线。

任一条等温线要么形成封闭的曲线,要么终止于物体表面,不会与另一条等温线相交。

等温线得疏密可直观反映不同区域导热热流密度相对大小。

3、导热基本定律

更一般得角度给出傅里叶定律:

\varPhi =-\lambda A\frac{\partial t}{\partial x} \\ q=\frac{\varPhi}{A}=-\lambda \frac{\partial t}{\partial x}

式中\frac{\partial t}{\partial x}是物体沿x方向的温度变化率,q是沿x方向传递的热流密度(严格地说热流密度是矢量),所以q应该是热流密度矢量在x方向的分量。

温度三个坐标方向上的单位矢量与该方向上的热流密度分量的乘积合成一个空间热流密度矢量q。

4、导热问题的数学描述

为获得导热温度物体温度场的数学表达式,需根据能量守恒定律和傅里叶定律来建立物体中的温度场应当满足的变化关系式,称为导热微分方程。导热微分方程是所有导热物体的温度场都应该满足的通用方程。

对于各个具体的问题,还必须规定相应的时间与边界条件,称为定解条件。

导热微分方程及相应的定解条件,构成一个导热问题完整的数学描述。

5、导热微分方程

从导热物体中任意取出一个微元平行六面体,设物体中有内热源,其值为\varPhi \prime

如上图,通过x=x,y=y,z=z三个微元表面而导入微元体的热流量可以根据傅里叶定律写出为:

\left( \varPhi _x \right) _x=-\lambda \left( \frac{\partial t}{\partial x} \right) _xdydz \\ \left( \varPhi _y \right) _y=-\lambda \left( \frac{\partial t}{\partial y} \right) _ydxdz \\ \left( \varPhi _z \right) _z=-\lambda \left( \frac{\partial t}{\partial z} \right) _zdxdy

如上图,通过x=x+dx,y=y+dy,z=z+dz三个微元表面而导出微元体的热流量可以根据傅里叶定律写出为(泰勒展开):

\left( \varPhi _x \right) _{x+dx}=\left( \varPhi _x \right) _x+\frac{\partial \varPhi _x}{\partial x}dx \\ \left( \varPhi _y \right) _{y+dy}=\left( \varPhi _y \right) _y+\frac{\partial \varPhi _y}{\partial y}dy \\ \left( \varPhi _z \right) _{z+dz}=\left( \varPhi _z \right) _z+\frac{\partial \varPhi _z}{\partial z}dz

在任一时间间隔内有以下热平衡关系:

导入微元体的总热流量+微元体内热源的生成热=

导出微元体的总热流量+微元体热力学能(内能)的增量

其中微元体热力学能的增量为:

\rho cv\varDelta \tau =\rho c\frac{\partial t}{\partial \tau}dxdydz

其中体内热源的生成热为:

\varPhi \prime\mathrm{dxdydz}

经整理得笛卡儿坐标系中三维非稳态导热微分方程得一般形式:

\rho c\frac{\partial t}{\partial \tau}=\frac{\partial}{\partial x}\left( \lambda \frac{\partial t}{\partial x} \right) +\frac{\partial}{\partial y}\left( \lambda \frac{\partial t}{\partial y} \right) +\frac{\partial}{\partial z}\left( \lambda \frac{\partial t}{\partial z} \right) +\varPhi \prime

6、导热微分简化方程

(1)、导热系数为常数

(\lambda为常数,可以提出来)

\rho c\frac{\partial t}{\partial \tau}=\lambda \frac{\partial ^2t}{\partial x^2}+\lambda \frac{\partial ^2t}{\partial y^2}+\lambda \frac{\partial ^2t}{\partial z^2}+\varPhi \prime

(2)、导热系数为常数,无内热源

(\lambda为常数,可以提出来),泊松方程。

\rho c\frac{\partial t}{\partial \tau}=\lambda \frac{\partial ^2t}{\partial x^2}+\lambda \frac{\partial ^2t}{\partial y^2}+\lambda \frac{\partial ^2t}{\partial z^2}

(3)、常物性、稳态

(\lambda为常数,\frac{\partial t}{\partial \tau}=0)

0=\frac{\partial ^2t}{\partial x^2}+\frac{\partial ^2t}{\partial y^2}+\frac{\partial ^2t}{\partial z^2}+\frac{\varPhi \prime}{\lambda}

(4)、常物性、稳态、无内热源

(\lambda为常数,\frac{\partial t}{\partial \tau}=0\varPhi \prime=0),拉普拉斯方程

0=\frac{\partial ^2t}{\partial x^2}+\frac{\partial ^2t}{\partial y^2}+\frac{\partial ^2t}{\partial z^2}

7、转换坐标系

(1)、圆柱坐标系

\rho c\frac{\partial t}{\partial \tau}=\frac{1}{r}\frac{\partial}{\partial r}\left( \lambda \frac{\partial t}{\partial r} \right) +\frac{1}{r^2}\frac{\partial}{\partial \varphi}\left( \lambda \frac{\partial t}{\partial \varphi} \right) +\frac{\partial}{\partial z}\left( \lambda \frac{\partial t}{\partial z} \right) +\varPhi \prime

(2)、球坐标系

\rho c\frac{\partial t}{\partial \tau}=\frac{1}{r^2}\frac{\partial}{\partial r}\left( \lambda r^2\frac{\partial t}{\partial r} \right) +\frac{1}{r^2\sin ^2\theta}\frac{\partial}{\partial \varphi}\left( \lambda \frac{\partial t}{\partial \varphi} \right) +\frac{1}{r^2\sin \theta}\frac{\partial}{\partial \theta}\left( \lambda \sin \theta \frac{\partial t}{\partial \theta} \right) +\varPhi \prime

8、定解条件

(1)、第一类边界条件:

规定边界温度保持常数:

t_w=f_1\left( \tau \right) ,\tau >0

(2)、第二类边界条件:

规定边界上得热流密度保持定值:

-\lambda \left( \frac{\partial t}{\partial n} \right) _w=f_2\left( \tau \right) ,\tau >0

(3)、第三类边界条件:

规定边界上物体与周围流体间表面传热系数h及周围流体得温度tf:

-\lambda \left( \frac{\partial t}{\partial n} \right) _w=h\left( t_w-t_f \right)

(4)、第四类边界条件:

规定两种材料分界面上,温度与热流密度连续:

t_{\shortmid}=t_{\shortparallel},\left( \lambda \frac{\partial t}{\partial n} \right) _{\shortmid}=\left( \lambda \frac{\partial t}{\partial n} \right) _{\shortparallel}

9、典型一维稳态导热问题得分析解

(1)、单层平壁

常物性、无内热源的一维稳态导热问题。

由导热微分方程,获得薄板温度场的数学描述为:

\frac{d^2t}{dx^2}=0 \\ \left\{ \begin{array}{c} x=0,t=t_1\\ x=\delta ,t=t_2\\ \end{array} \right.

其通解为:

t=c_1x+c_2

将边界条件带入得最后温度分布:

t=\frac{t_2-t_1}{\delta}x+t_1

温度线性分布,斜率为常数\frac{dt}{dx}=\frac{t_2-t_1}{\delta},可算热流密度和热流量:

q=-\lambda \frac{dt}{dx}=\lambda \frac{t_2-t_1}{\delta}, \varPhi =Aq=A\lambda \frac{t_2-t_1}{\delta}

(2)、多层平壁

常物性、无内热源的一维稳态导热问题。层与层接触良好,无附加热阻。按照单层平壁计算得:

\left\{ \begin{array}{c} \frac{t_1-t_2}{q}=\frac{\delta _1}{\lambda _1}\\ \frac{t_2-t_3}{q}=\frac{\delta _2}{\lambda _2}\\ \frac{t_3-t_4}{q}=\frac{\delta _3}{\lambda _3}\\ \end{array} \right.

可算得热流密度:

q=\frac{t_1-t_4}{\frac{\delta _1}{\lambda _1}+\frac{\delta _2}{\lambda _2}+\frac{\delta _3}{\lambda _3}}

(3)、带二三类边界条件

电熨斗散热。已知电功率p,得q_0=\frac{p}{A}

由导热微分方程,获得右侧薄板温度场的数学描述为:

\frac{d^2t}{dx^2}=0

边界条件:

\left\{ \begin{array}{c} x=0,-\lambda \frac{dt}{dx}=q_0\\ x=\delta ,-\lambda \frac{dt}{dx}=h\left( t-t_{\propto} \right)\\ \end{array} \right.

通解为:

t=c_1x+c_2

左侧边界条件带入:

-\lambda c_1=q_0,c1=-\frac{q_0}{\lambda}

右侧边界条件带入:

-\lambda c_1=h\left[ \left( c_1\delta +c_2 \right) -t_{\propto} \right] \\ c_2=t_{\propto}-\frac{c_1\lambda}{h}-c_1\delta =t_{\propto}+\frac{q_0}{h}+\frac{q_0}{\lambda}\delta

带入通解,得温度分布:

t=t_{\propto}+q_0\left( \frac{\delta -x}{\lambda}+\frac{1}{h} \right)

(4)、变截面或变导热系数的一维问题

直接对傅里叶热定律表达式做积分。

10、通过肋片的导热

11、具有内热源的一维导热问题

具有内热源的平壁,两侧与流体发生对流传热。由于对称性,只研究薄板一半即可。

由导热微分方程,获得一半薄板温度场的数学描述为:

\frac{d^2t}{dx^2}+\frac{\dot{\varPhi}}{\lambda}=0

边界条件:

\left\{ \begin{array}{c} x=0,\frac{dt}{dx}=0\\ x=\delta ,-\lambda \frac{dt}{dx}=h\left( t-t_f \right)\\ \end{array} \right.

通解为:

t=\frac{\dot{\varPhi}}{2\lambda}x^2+c_1x+c_2

带入边界条件得平板中得温度分布和热流密度:

t=\frac{\dot{\varPhi}}{2\lambda}\left( \delta ^2-x^2 \right) +\frac{\dot{\varPhi}\delta}{h}+t_f \\ q=-\lambda \frac{dt}{dx}=\dot{\varPhi}x

  • 19
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
MATLAB可以用于解决稳态热传导问题。首先,我们需要确定维模型传热控制微分方程,该方程可以在传热学的书籍中找到。一般来说,热传导方程可以表示为: d^2T/dx^2 + d^2T/dy^2 = 0 其中,T是温度,x和y是空间坐标。接下来,我们需要对区域进行离散化,将其划分为网格点。内域网格点用绿色表示,左侧高温边界网格点用红色表示,低温边界网格点用蓝色表示。 然后,我们将微分方程转换为代数方程。对于每个内域网格点,可以使用以下公式计算温度: T(i, j) = (T(i+1, j) + T(i-1, j) + T(i, j+1) + T(i, j-1)) / 4 其中,T(i, j)表示网格点(i, j)处的温度。 最后,我们使用数值方法求解代数方程,直到达到收敛条件。通过迭代计算,我们可以得到稳态热传导问题的解。在MATLAB中,可以编写相应的程序代码来实现这个过程,并将结果可视化。 引用\[1\]中提到的方法结合MATLAB的强大数据处理和模拟仿真功能,可以对给定初边值条件的热传导方程进行研究并将其可视化。这种方法相比使用FORTRAN或C语言来完成同样的任务,具有更低的成本和更高的效率。 因此,使用MATLAB可以方便地解决稳态热传导问题,并通过可视化结果来更好地理解和分析热传导过程。 #### 引用[.reference_title] - *1* *2* [热传导方程数值解及MATLAB实现.docx](https://blog.csdn.net/weixin_29890919/article/details/115825778)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [MATLAB实现稳态导热](https://blog.csdn.net/weixin_45896923/article/details/130631893)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值