问题描述:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
分析:使用动态规划算法,对于每一行而言,f(i,j) = min(f(i-1,j-1),f(i-1,j)+val; 然后查看最后一行的情况。
代码如下:8ms
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int n = triangle.size();
if(n<=0)
return 0;
vector<int> prev = triangle.at(0);
if(prev.size()<=0)
return 0;
for(int i = 1;i<n;i++){
vector<int> cur = triangle.at(i);
for(int j = 0;j<cur.size();j++){
int val = INT_MAX;
if(j-1>=0){
if(val>prev.at(j-1))
val = prev.at(j-1);
}
if(j<prev.size())
if(val>prev.at(j))
val = prev.at(j);
cur[j] += val;
}
prev = cur;
}
int min = prev.at(0);
for(int i = 1;i<prev.size();i++){
if(min>prev.at(i))
min = prev.at(i);
}
return min;
}
};