问题如下:
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST’s total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
分析如下:看到第一眼想到的最小堆,用优先级队列实现了一遍。后来看网上介绍,直接使用查找第k个元素即可。
代码如下(最小堆):452ms
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
Queue<Integer> queue;
int maxSize;
private void addElement(int val){
if(queue.size()==maxSize){
if(queue.peek()<val)
return;
queue.poll();
}
queue.offer(val);
}
private void initQueue(TreeNode root){
if(root== null)
return;
if(root.left==null && root.right==null){
addElement(root.val);
return;
}
initQueue(root.left);
addElement(root.val);
initQueue(root.right);
}
public int kthSmallest(TreeNode root, int k) {
Comparator<Integer> comparator = new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2-o1;
}
};
maxSize = k;
queue = new PriorityQueue<>(comparator);
initQueue(root);
return queue.peek();
}
}
直接递归查找:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
List<Integer> res;
int maxSize;
private void initList(TreeNode root){
if(root==null)
return;
if(res.size()==maxSize)
return;
if(root.left ==null && root.right==null){
res.add(root.val);
return;
}
initList(root.left);
res.add(root.val);
initList(root.right);
}
public int kthSmallest(TreeNode root, int k) {
res = new LinkedList<>();
maxSize = k;
initList(root);
return res.get(k-1);
}
}