[leetcode-230]Kth Smallest Element in a BST(java)

问题如下:
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.

Note:
You may assume k is always valid, 1 ≤ k ≤ BST’s total elements.

Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?

分析如下:看到第一眼想到的最小堆,用优先级队列实现了一遍。后来看网上介绍,直接使用查找第k个元素即可。

代码如下(最小堆):452ms

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    Queue<Integer> queue;
    int maxSize;
    private void addElement(int val){
        if(queue.size()==maxSize){
            if(queue.peek()<val)
                return;
            queue.poll();
        }
        queue.offer(val);
    }

    private void initQueue(TreeNode root){
        if(root== null)
            return;
        if(root.left==null && root.right==null){
            addElement(root.val);
            return;
        }
        initQueue(root.left);
        addElement(root.val);
        initQueue(root.right);
    }
    public int kthSmallest(TreeNode root, int k) {
        Comparator<Integer> comparator = new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o2-o1;
            }
        };
        maxSize = k;
        queue = new PriorityQueue<>(comparator);
        initQueue(root);
        return queue.peek();
    }
}

直接递归查找:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
     List<Integer> res;
    int maxSize;
    private void initList(TreeNode root){
        if(root==null)
            return;
        if(res.size()==maxSize)
            return;
        if(root.left ==null && root.right==null){
            res.add(root.val);
            return;
        }

        initList(root.left);
        res.add(root.val);
        initList(root.right);
    }
    public int kthSmallest(TreeNode root, int k) {
        res = new LinkedList<>();
        maxSize = k;
        initList(root);
        return res.get(k-1);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值