DeepSeek-R1模型本地部署教程

ollama

下载

ollama是一个开源的 LLM(大型语言模型)服务工具,用于简化在本地运行大语言模型,降低使用大语言模型的门槛,使得大模型的开发者、研究人员和爱好者能够在本地环境快速实验、管理和部署最新大语言模型,包括如Llama 3、Phi 3、Mistral、Gemma等开源的大型语言模型。

Ollama目前支持以下大语言模型:https://ollama.com/library

下载地址:Ollama

安装完后可以看命令行是否安装成功

模型选择

搜索deepseek-r1

选择模型推理模式

模型大小和显卡、内存资源表格

本机用的mac m4芯片 16+512配置,可以使8B模型流畅运行

然后选择适合本机的模型大小命令在终端运行。

安装好后就可以使用模型了

输入/bye可退出命令行

chatbox

虽然终端可以直接运行,但是不方便。这里推荐chatbox

Chatbox AI 是一款 AI 客户端应用和智能助手,支持众多先进的 AI 模型和 API,可在 Windows、MacOS、Android、iOS、Linux 和网页版上使用。

安装地址:Chatbox AI官网:办公学习的AI好助手,全平台AI客户端,官方免费下载

也可以使用在线版本

点击设置

进行如下配置

开启新对话就可以直接使用了!

模型差异

这里就用豆包(在线)和deepSeek-r1 8b(本地)来做一个比较。

学术问题

勾股定理

豆包

deepSeek-r1

代码问题

CAS

豆包

deepSeek-r1

逻辑问题

喜欢装好人的王老汉被警察发现家里冰柜装满了好人,那他是不是好人

豆包

deepSeek-r1

差异

相比于线上给用户使用的豆包,本地部署的deepSeek-r1会把自己的思考过程给写出来,也就是它应该如何去回答用户提出的问题。

资源占用情况

本地使用deepSeek-r1 8b模型生成对话,后台占用资源情况。

内存

cpu

        

### 关于 DeepSeek-R1 模型本地部署教程 对于计算机专业的初学者来说,在本地环境中部署 DeepSeek-R1 模型可以通过遵循一系列清晰的指导来实现。以下是详细的步骤说明: #### 准备工作环境 确保安装了必要的软件包和依赖项,包括 Python 和虚拟环境管理工具如 `venv` 或者 Anaconda。 ```bash # 创建并激活一个新的Python虚拟环境 (使用 venv 为例) python3 -m venv myenv source myenv/bin/activate # Linux/MacOS myenv\Scripts\activate # Windows ``` #### 安装依赖库 下载 DeepSeek-R1 的 GitHub 仓库,并按照 README 文件中的指示安装所需的 Python 库和其他依赖项[^1]。 ```bash git clone https://github.com/deepseek-r requirements.txt ``` #### 下载预训练模型权重文件 访问 Hugging Face 页面获取预训练好的模型权重文件,并将其放置到指定目录下以便加载使用。 ```bash mkdir models wget https://huggingface.co/path/to/model_weights -P ./models/ ``` #### 配置环境变量 设置一些重要的环境变量指向模型路径以及其他配置参数,这通常可以在启动脚本中完成。 ```bash export MODEL_PATH="./models/pretrained_model" ``` #### 运行测试实例 执行提供的示例代码来进行初步验证,确认一切正常运作之后再继续深入开发应用逻辑。 ```python from deepseek_r1 import load_model, predict model = load_model(MODEL_PATH) result = predict(model, input_data="example_input") print(result) ``` 以上就是针对计算机专业初学者的一份简易版 DeepSeek-R1 模型本地部署指南。希望这份资料能够帮助理解整个过程,并顺利搭建起自己的实验平台。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

故离ovo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值