DeepSeek本地化部署(由豆包和DeepSeek汇总生成)

由于个人的机器无法满足满血版本的安装的硬件要求,重新写了一篇本地化部署蒸馏版的博客,里面提供了更具体的安装步骤:DeepSeek r1蒸馏版本地化部署-CSDN博客 

一、注意事项

  1. 模型选择

    • 根据硬件配置选择模型版本(显存需求:7B 需 10GB+,32B 需 40GB+)。
    • 低配置用户可尝试量化模型(如q4_0量化,显存降至 6GB)。
  2. 依赖管理

    • 安装包需包含 CUDA、PyTorch 等依赖,或在安装时检测并提示用户安装。
  3. 安全与许可

    • 确保打包内容符合 DeepSeek 开源协议,避免商业滥用。

二、本地化部署方案

方法 1:使用 Ollama 工具(推荐)
  1. 安装 Ollama

    • 下载地址:Ollama 官网
    • 安装后设置环境变量(避免模型存储在 C 盘):

      收起

      bash

      OLLAMA_HOST=0.0.0.0  # 允许远程访问
      OLLAMA_MODELS_PATH=D:\AI_Models\deepseek-R1  # 自定义存储路径
      
  2. 下载并部署 DeepSeek 模型

    • 打开终端(管理员权限),执行以下命令:

      收起

      bash

      ollama run deepseek-r1:7b  # 根据硬件选择模型版本(如7B/14B/32B)
      
    • 等待模型下载完成(约 15-30 分钟)。
  3. 验证部署

    • 在终端输入问题测试模型:

      收起

      bash

      ollama run deepseek-r1 "你好,DeepSeek!"
      
方法 2:手动部署(适合开发者)

  1. 克隆代码库

    收起

    bash

    git clone https://github.com/deepseek-ai/deepseek.git
    cd deepseek
    
  2. 安装依赖

    收起

    bash

    pip install -r requirements.txt
    
  3. 下载模型文件

    • 从 DeepSeek 官方获取预训练模型,保存至models/目录。
  4. 配置环境变量

    收起

    bash

    export MODEL_PATH=models/deepseek_model.pth
    export CUDA_VISIBLE_DEVICES=0  # 指定GPU
    
  5. 运行模型

    收起

    bash

    python run.py --model_path $MODEL_PATH --input "你的输入文本"
    

三、打包到安装包

步骤 1:准备打包工具
步骤 2:封装部署文件
  1. 打包内容

    • Ollama 安装包(或 DeepSeek 源码)。
    • 预训练模型文件(建议分卷压缩,避免单个文件过大)。
    • 部署脚本(如.bat.sh文件)。
    • 环境配置文件(如Modelfile)。
  2. 编写安装脚本

    • Windows 示例(批处理)

      收起

      batch

      @echo off
      echo 正在安装DeepSeek...
      echo 1. 安装Ollama...
      start /wait ollama-setup.exe /S
      echo 2. 下载模型...
      powershell -Command "Invoke-WebRequest -Uri https://ollama.com/models/deepseek-r1:7b -OutFile D:\AI_Models\deepseek-r1\model.pth"
      echo 3. 配置环境变量...
      setx OLLAMA_MODELS_PATH "D:\AI_Models\deepseek-R1" /M
      echo 安装完成!
      pause
      
  3. 生成安装包

    • 使用打包工具将上述文件和脚本封装成可执行程序,支持自定义安装路径和用户界面。

四、推荐工具链

  • 模型管理:Ollama(简化部署)。
  • 可视化交互:Open-WebUI 或 Chatbox(需额外安装)。
  • 加速优化:使用 NVIDIA 驱动和 CUDA 工具包提升性能。

通过以上步骤,用户可将 DeepSeek 本地化部署并封装为安装包,实现便捷分发与快速部署。

### 如何在本地部署DeepSeek 平台上实现类似豆包的语音对话功能 #### 使用的 API 配置方法 为了实现在本地部署DeepSeek 上构建类似的语音对话功能,可以考虑采用以下方案: - **语音识别接口**:首先需要引入一个可靠的语音识别服务来处理用户的音频输入并转换为文本。可以选择像百度 AIP 或阿里云这样的国内知名提供商所提供的 RESTful API 来完成这项任务[^3]。 - **自然语言处理 (NLP)**:接着利用 DeepSeek 自身强大的 NLP 能力去理解回应这些由语音转化而来的文字请求。由于 DeepSeek 支持多种预训练模型以及自定义微调选项,可以根据具体需求调整响应策略以更好地模拟“豆包”的交互风格[^1]。 - **语音合成 TTS**:最后一步则是将系统的回复再次转化为声音输出给用户听觉反馈。同样地,这里也可以借助外部的服务商比如科大讯飞提供的高质量 Text-to-Speech 解决方案来进行最终的声音渲染。 #### 配置说明 对于想要使用 GPU 加速提高性能的情况而言,考虑到 DeepSeek 对于硬件的要求较高特别是当涉及到更大规模的语言模型时,则建议至少配备具备 8GB 显存以上的图形处理器设备以便顺利运行所需的任务负载。而对于那些希望保持较低成本投入或是现有计算资源有限的情况下,可以通过优化算法参数设置或者选用更适合小型化应用场景下的轻量化版本模型等方式降低对物理资源配置的需求。 另外值得注意的是,在整个过程中还需要确保各个组件之间的良好协作与无缝衔接,这就意味着开发者应当仔细阅读相关文档资料,并按照指导步骤正确实施必要的开发调试工作直至达到预期效果为止[^2]。 ```python import requests def recognize_speech(audio_file_path): url = 'https://api.example.com/speech/recognition' files = {'audio': open(audio_file_path, 'rb')} response = requests.post(url, files=files) return response.json()['text'] def process_text_with_deepseek(text_input): # 假设此处已经完成了向 DeepSeek 发送 POST 请求并将返回的结果解析出来作为下一步操作的基础 pass def synthesize_speech(text_to_synthesize): tts_url = 'https://tts.api.example.com/v1/tts' payload = {"input": text_to_synthesize} headers = {'Content-Type': 'application/json'} response = requests.post(tts_url, json=payload, headers=headers) with open('output.mp3', 'wb') as f: f.write(response.content) # 示例流程 user_audio = './path/to/user/audio.wav' # 用户上传的语音文件路径 recognized_text = recognize_speech(user_audio) response_from_ai = process_text_with_deepseek(recognized_text) synthesize_speech(response_from_ai) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值