贝叶斯公式推导及意义

条件概率公式

设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:

                 P(A|B)=P(AB)/P(B)

乘法公式

1.由条件概率公式得:

                   P(AB)=P(A|B)P(B)=P(B|A)P(A)    

上式即为乘法公式;

2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2…An-1) > 0 时,有:

             P(A1A2...An-1An)=P(A1)P(A2|A1)P(A3|A1A2)...P(An|A1A2...An-1)

全概率公式

  1. 如果事件组B1,B2,…. 满足

    1).B1,B2….两两互斥,即 Bi ∩ Bj = ∅ ,i≠j , i,j=1,2,….,且P(Bi)>0,i=1,2,….;

    2).B1∪B2∪….=Ω ,则称事件组 B1,B2,…是样本空间Ω的一个划分

    设 B1,B2,…是样本空间Ω的一个划分,A为任一事件,则:

这里写图片描述
上式即为全概率公式(formula of total probability)

2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(Bi),P(A|Bi) (i=1,2,…)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,…Bn,这样事件A就被事件AB1,AB2,…ABn分解成了n部分,即A=AB1+AB2+…+ABn, 每一Bi发生都可能导致A发生相应的概率是P(A|Bi),由加法公式得

     P(A)=P(AB1)+P(AB2)+....+P(ABn)

           =P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|Bn)P(PBn)

3.实例:某车间用甲、乙、丙三台机床进行生产,各台机床次品率分别为5%,4%,2%,它们各自的产品分别占总量的25%,35%,40%,将它们的产品混在一起,求任取一个产品是次品的概率。

            解:设.....     P(A)=25%*5%+4%*35%+2%*40%=0.0345

贝叶斯公式

1.与全概率公式解决的问题相反,贝叶斯公式是建立在条件概率的基础上寻找事件发生的原因(即大事件A已经发生的条件下,分割中的小事件Bi的概率),设B1,B2,…是样本空间Ω的一个划分,则对任一事件A(P(A)>0),有

这里写图片描述

上式即为贝叶斯公式(Bayes formula),Bi 常被视为导致试验结果A发生的”原因“,P(Bi)(i=1,2,…)表示各种原因发生的可能性大小,故称先验概率;P(Bi|A)(i=1,2…)则反映当试验产生了结果A之后,再对各种原因概率的新认识,故称后验概率

2.实例:发报台分别以概率0.6和0.4发出信号“∪”和“—”。由于通信系统受到干扰,当发出信号“∪”时,收报台分别以概率0.8和0.2受到信号“∪”和“—”;又当发出信号“—”时,收报台分别以概率0.9和0.1收到信号“—”和“∪”。求当收报台收到信号“∪”时,发报台确系发出“∪”的概率。

     解:设...., P(B1|A)= (0.6*0.8)/(0.6*0.8+0.4*0.1)=0.923

转自http://www.cnblogs.com/ohshit/p/5629581.html

  • 6
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
关于贝叶斯定理,其最初的证明是由英国数学家、牧师Thomas Bayes在18世纪提出的,但该证明并未被他本人发表。直到20世纪50年代,英国统计学家Dennis V. Lindley在整理Bayes的手稿时才发现了这个证明,故而被命名为贝叶斯定理贝叶斯定理是指在给定某一条件下,根据新的信息来更新已有的假设的概率。它的数学表示为P(A|B) = (P(B|A) * P(A)) / P(B),其中P(A)和P(A|B)分别表示事件A的先验概率和后验概率,P(B|A)表示在事件A发生的前提下事件B的条件概率,P(B)为事件B的概率。 2006年,关于贝叶斯证明的论文由统计学家David Bishop在《Pattern Recognition and Machine Learning》一书中发表。这篇论文提供了更为详细和系统的贝叶斯证明。 Bishop的论文首先从条件概率的定义出发,利用全概率公式以及条件概率的性质,推导贝叶斯定理。接着,借助贝叶斯定理,他针对不同情形提供了几个具体的证明例子,并以此解释了贝叶斯定理在模式识别与机器学习中的应用。 Bishop的证明方法非常清晰简洁,将贝叶斯定理推导过程展示得易于理解。他的证明指导我们在实际问题中如何运用贝叶斯定理来更新概率,从而对现象进行解释和预测。 总的来说,Bishop于2006年的贝叶斯证明论文对于推动贝叶斯定理在机器学习和模式识别领域的应用起到了重要的作用。它不仅详细阐释了贝叶斯定理意义和应用场景,同时也将其数学证明过程清晰地呈现给读者,使更多人能够理解和运用这一重要的统计学定理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值