贝叶斯定理:
P(A|B) = P(B|A)P(A)/P(B)。
其中,P(A)称为先验概率;
P(B|A)称为似然概率(likelihood),是先前统计的事件中,A事件发生情况下B事件发生的概率;
P(B)称为边际似然概率(marginal likelihood),表示B事件发生的概率,比如在垃圾邮件分类过程中,可理解为一个单词出现在所有邮件中的概率;
P(A|B)称为后验概率。
贝叶斯定理:
P(A|B) = P(B|A)P(A)/P(B)。
其中,P(A)称为先验概率;
P(B|A)称为似然概率(likelihood),是先前统计的事件中,A事件发生情况下B事件发生的概率;
P(B)称为边际似然概率(marginal likelihood),表示B事件发生的概率,比如在垃圾邮件分类过程中,可理解为一个单词出现在所有邮件中的概率;
P(A|B)称为后验概率。