Kaggle比赛整理

Kaggle 是 Google 旗下的数据建模和数据分析竞赛平台,其上汇集了大量的数据建模和数据分析比赛。

1 . kaggle比赛分类

Kaggle 网站的比赛(Competitions)可以分为两大类(感谢原作者,引用来源):

1.1 面向初学者

  • Getting Started:让初学者体会机器学习的比赛
  • Playground:有趣的比赛,主要看创意,而非解决具体的研究问题

1.2 面向竞赛者

  • Recruitment:赞助商为招聘数据科学家而设立的比赛
  • Featured:为解决商业问题设立的有奖金的比赛
  • Research:解决学界前沿问题设立的比赛

1.3 比赛统计

截至2017年8月5日,Kaggle 上的比赛统计如下:
这里写图片描述

2. 其他

[1] 怎样快糙猛的开始搞Kaggle比赛
[2]参加kaggle竞赛是怎样一种体验?
[3]在Kaggle上赢得大数据竞赛的技巧和窍门
[4] Kaggle 数据挖掘比赛经验分享
[5]大数据竞赛平台——Kaggle 入门
[6]Kaggle初学者五步入门指南,七大诀窍助你享受竞赛

### Kaggle比赛参与流程 #### 1. 注册并登录Kaggle账户 访问[Kaggle官网](https://www.kaggle.com/)创建个人账户[^2]。 #### 2. 查找感兴趣的竞赛 浏览网站上的各类竞赛,阅读竞赛描述来了解具体的任务目标以及所提供的数据集情况。对于感兴趣的比赛项目,仔细查看其背景介绍、规则说明等内容[^1]。 #### 3. 加入竞赛 当找到想要参加的比赛后,点击页面中的“Join Competition”按钮加入到比赛中去,在此之前需要同意官方制定的相关条款协议才能获取下载权限等操作权利。 #### 4. 下载数据集与理解评估标准 成功报名之后即可获得对训练样本及测试实例文件夹的读取权;同时也要关注主办方给出的成绩评判准则以便后续调整优化策略方向[^3]。 #### 5. 数据探索分析(EDA) 利用Python或其他工具加载所给定的数据源做初步统计特征挖掘工作,比如缺失值处理、异常检测等方面的研究活动有助于加深对业务逻辑的理解程度从而指导建模思路的选择过程。 ```python import pandas as pd # 假设已经下载好train.csv文件至当前目录下 data = pd.read_csv('train.csv') print(data.describe()) ``` #### 6. 构建机器学习模型 基于前准备工作之上挑选合适的算法框架搭建预测体系结构,并通过交叉验证等方式不断迭代改进直至达到满意效果为止。 #### 7. 提交结果 按照规定格式整理好待上传的结果文档并通过线上平台完成递交动作,注意每次提交都会更新一次公开榜单分数供其他选手参考对比之用。 #### 8. 查询成绩反馈 等待一段时间让后台服务器运行完毕后再返回查看最新得分状况及其对应排名位置变化趋势图谱等信息作为下一步行动指南依据之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值