模型压缩
文章平均质量分 76
szZack
工作已有十几年了,在创业公司干过,在上市公司干过,现在工作不那么紧张了,偶尔有点时间,写一点过往的积累。
展开
-
openvino 将onnx转为IR并进行int8量化
openvino 将onnx转为IR并进行int8量化原创 2023-09-23 09:15:27 · 1332 阅读 · 0 评论 -
AI实战:深度学习模型压缩加速方法汇总
深度学习模型压缩加速方法可大致分为2大类1、设计新的卷积计算方法设计新的卷积计算方法,从而减少参数,达到压缩模型的效果,例如 SqueezedNet、mobileNet比如:depth-wise 卷积、point-wise 卷积(Depthwise卷积与Pointwise卷积详解)2、在已训练好的模型上做裁剪先训练好模型,再在其上做fine-tuning,主要方法包括:剪枝...原创 2020-02-22 20:18:19 · 2392 阅读 · 0 评论 -
AI模型压缩算法汇总
AI模型压缩算法汇总最新新闻2019-06-29 新闻原文:CVPR 2019:北邮提出新AI模型压缩算法,显著降低计算复杂度 论文:http://openaccess.thecvf.com/content_CVPR_2019/papers/Li_OICSR_Out-In-Channel_Sparsity_Regularization_for_Compact_Deep_Neural_Ne...转载 2019-06-30 10:49:45 · 7332 阅读 · 0 评论 -
AI实战:深度学习模型压缩:模型裁剪——Pruning with Tensorflow
前言从工程角度来说,模型压缩其目的是将算法更稳定、高效的落地在硬件平台上,效率是其追求的目标。复杂的模型固然具有更好的性能,但是高额的存储空间、计算资源消耗是使其难以有效的应用在各硬件平台上。本文总结深度学习模型裁剪的一些方法及开源代码分享。模型裁剪深度学习模型裁剪方法:1、剪枝2、权值共享3、量化4、神经网络二值化Pruning经典开源代码及论文1、《T...原创 2019-08-24 10:06:36 · 8206 阅读 · 0 评论 -
AI实战:深度学习模型压缩:模型裁剪——Pruning with Keras
前言上一篇文章 AI实战:深度学习模型压缩:模型裁剪——Pruning with Tensorflow 介绍了使用Tensorflow裁剪模型的方法,本文继续介绍使用Keras裁剪模型的方法及源码分享。模型裁剪1、《Train sparse TensorFlow models with Keras》 【TF官网方法】核心思想:对neural network’s weight ten...原创 2019-08-24 10:10:59 · 6608 阅读 · 0 评论