AI实战:深度学习模型压缩:模型裁剪——Pruning with Keras

前言


上一篇文章 AI实战:深度学习模型压缩:模型裁剪——Pruning with Tensorflow 介绍了使用Tensorflow裁剪模型的方法,本文继续介绍使用Keras裁剪模型的方法及源码分享。



模型裁剪


1、《Train sparse TensorFlow models with Keras》 【TF官网方法】

核心思想:对neural network’s weight tensors进行pruning

论文:To prune, or not to prune: exploring the efficacy of pruning for model compression (https://arxiv.org/abs/1710.01878)

主要内容:
在这里插入图片描述
github地址:https://github.com/tensorflow/model-optimization/tree/master/tensorflow_model_optimization/g3doc/guide/pruning

官方给出的实现例子:https://github.com/tensorflow/model-optimization/blob/master/tensorflow_model_optimization/g3doc/guide/pruning/pruning_with_keras.ipynb



2、《Ridurre - Filter Pruning in Deep Convolutional Networks》

核心思想:对convolutional filter进行pruning

论文:Filter Level Pruning Based on Similar Feature Extraction for Convolutional Neural Networks(https://www.jstage.jst.go.jp/article/transinf/E101.D/4/E101.D_2017EDL8248/_pdf)

Demystifying Neural Network Filter Pruning( https://openreview.net/pdf?id=rJffBWBtoX )

主要内容如下:
在这里插入图片描述github地址:https://github.com/gaborvecsei/Ridurre-Network-Filter-Pruning-Keras



相关文章


AI实战:深度学习模型压缩:模型裁剪——Pruning with Tensorflow

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

szZack

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值