零膨胀回归模型简介及其R语言实现

概念

  1. 零膨胀现象:在计数数据中,若0的个数明显多于泊松、负二项等标准离散分布随机产生的个数,称此现象为零过多现象(zero-inflated, ZI)
  2. 零膨胀模型:伯努利分布与普通计数分布(泊松等)的混合分布,分为零数据部分及非零计数部分。
  3. 结构零&抽样零:零膨胀模型零数据部分一部分来自于普通计数分布产生的抽样零,另一部分来自于额外得到的结构零。实际上,结构零可以看成由取值为零的退化总体产生,抽样零则是由非退化总体(Poisson分布等)产生。

例如:在调查一种药物的吸食状况数据时,且该药物吸食数据已经通过Poisson分布检验,则可以认为,抽样零表示Poisson分布中产生的零数据,结构零表示在调研过程中吸食过该类药物却表示从未吸食过的受访者所产生的额外零数据。

常用零膨胀回归模型

零膨胀泊松回归模型

Lambert(1992)描述了零膨胀泊松(ZIP)混合分布,
在这里插入图片描述记为Y~ZIP(Ф,λ)
当Ф=0时,ZIP分布退化为标准的Poisson分布;当0<Ф<1时,Ф越大,说明数据中的零膨胀现象越明显。
ZIP 数学期望与方差分别为:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值