在笔试题中看到的一个选择题
用1*3的瓷砖密铺3*20的地板有几种方式?
排列组合问题
排列和组合问题,其实是两种问题,区分它们的原则是是否需要考虑顺序的不同
。排列问题,考虑顺序;组合问题,不考虑顺序。以下4个问题,哪个是排列,哪个是组合?
Q1: 一套书共有1-6 册,从书架上把它们全部取下。有多少种取法?
Q2: 有5个红球,3个黄球,2个黑球,从中选择2个球。有多少种不同的选择?
Q3: 10个候选人,选3个作为领队,有多少种选择方案?
Q4: 有一把3位数字密码锁,最多需要试多少次才能打开?
以上4个问题,1和4属于排列问题,2和3是组合问题。取书问题中,{1, 2, 3, 4, 5, 6}和{1, 6, 5, 4, 3, 2},两种方法顺序不同,属于不同的取法,即要考虑顺序不同的排列问题。选球问题中,第1次选黄第2次选黑,和第1次选黑第2次选黄,是相同的选择,即不同考虑顺序不同的组合问题。
此外,考虑是否重复又可分为排列可重复问题、排列不可重复问题、组合可重复问题、组合不可重复问题。例如Q4,{1, 2, 1}是一种密码,数字是可重复的。Q1,取书问题,就无法同一册书取两次,是不可重复的。
排列可重复
那么,何为“可重复”呢?暂且不考虑排列组合,先解释可重复。举个例子,冰淇淋有3种口味可以选择,我可以选择3种相同口味,也可以选择不同口味,每次选择即可相同也可不相同。再举个例子抛硬币3次,很显然,可能会出现3次都是正面,硬币出现正反面是可重复的。典型的问题如,开锁问题,彩票问题,都是排列可重复问题。
排列可重复问题公式如下,每次 n n 种选择,选择 次的排列共有:
排列不可重复
不可重复也很好理解了。例如,打桌球问题,一共15个球,打进所有球有多少种打法。这种情况下,不可能一个球重复打进,第一次击球有15种可能,第二次只有14种,……,最后一次就只有一个球了,只有一种可能。

这个打桌球问题,可以这样理解。首先,共有15个球,全部打完,共有多少种排列?显然, 15∗14∗...∗2∗1=15! 15 ∗ 14 ∗ . . . ∗ 2 ∗ 1 = 15 ! 。然后考虑,不全部打完呢?打3次有多少种排列,显然