14、注意力与行动控制:有限容量的功能视角

注意力与行动控制:有限容量的功能视角

1. 引言

自注意力概念在古希腊哲学中首次出现以来,其局限性就被视为核心方面之一。长期以来,人们一直在探讨注意力是如何受限的。现代注意力研究主要围绕注意力受限的位置展开,即其限制是影响刺激识别,还是仅影响后续的记忆存储和决策等过程。然而,对于注意力为何受限这一问题,却较少受到关注。

人们通常认为注意力的限制与大脑的有限处理能力相关,即认为大脑的传输、存储能力、计算能力或能量供应有限,导致了注意力任务表现的限制。但实际上,目前并没有生理上的确切证据表明大脑一次性获取信息的能力存在限制,也没有明显的神经生理学依据支持双任务表现受大脑硬件特性限制的假设。大脑在清醒状态下有大量的并行计算,许多子系统在整合不同来源的信息时也没有表现出容量限制。例如,在控制直立姿势时,视觉、前庭和本体感受信息会并行处理和整合。因此,与一些看似简单的注意力任务(如双耳分听、反应时任务)的容量限制相比,大脑的实际处理能力要大得多。

2. 容量为何有限:一些解释的综述

2.1 处理负荷

布罗德本特(Broadbent,1971)在讨论注意力的“后期选择”观点时,认为如果同时分析所有感官器官的所有可能模式,可能的组合数量会非常大,大脑难以同时处理所有这些组合,这就是人工智能研究中所说的组合爆炸问题。然而,这种解释无法解释注意力的一个基本特征:困难不在于组合刺激,而在于同时独立处理它们。

有两方面的证据支持这一观点:
- 监测和搜索任务通常显示,除非需要同时检测多个需要独立响应的目标,否则同时出现的刺激之间基本没有干扰。此外,冗余目标在某些条件下可以并行处理,平均反应时间比单个目标更短。
-

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值