PAT甲级1126

PAT甲级1126

题目大意:给定总节点数,总边数,让你判断是否是一个Eulerian路径。Eulerian路径:一个无向连通图所有的节点的度都是偶数;semi-Eulerian路径:一个无向连通图只有两个度为奇数的节点,剩下的节点度都是偶数;non-Eulerian:超过两个节点度为奇数。
统计度的问题,循环遍历每个节点累加度。之后遍历degree数组统计奇数度的个数即可。注意这里首先要判断图是否连通(测试点3)。

#include <stdio.h>
#include <vector>
#include <string>
#include <algorithm>
#include <math.h>
#define MAXN 505
using namespace std;

int n;
int edge[MAXN][MAXN];
bool visit[MAXN];
void DFS(int index){
	if(visit[index]) return ;
	visit[index]=true;
	for(int i=1;i<=n;i++)
		if(edge[index][i]>0&&!visit[i])
			DFS(i);
}
bool isConnected(){
	bool flag=true;
	for(int i=1;i<=n;i++)
		if(!visit[i]) flag=false;
	return flag;
}
int main(){
	int m,v1,v2;
	scanf("%d%d",&n,&m);
	int degree[n+1];
	for(int i=1;i<=n;i++){
		fill(edge[i],edge[i]+n+1,0);
		fill(degree,degree+n+1,0);
	}
	for(int i=0;i<m;i++){
		scanf("%d%d",&v1,&v2);
		edge[v1][v2]=edge[v2][v1]=1;
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			if(edge[i][j]>0) degree[i]++;
		}
	}
	DFS(1);
	int oddcnt=0;
	for(int i=1;i<=n;i++){
		if(i!=1) printf(" ");
		printf("%d",degree[i]);
		if(degree[i]%2!=0){
			oddcnt++;
		}
	}
	printf("\n");
	if(!isConnected()){
		printf("Non-Eulerian");
	}else{
		if(oddcnt==0) printf("Eulerian");
		else if(oddcnt==2) printf("Semi-Eulerian");
		else printf("Non-Eulerian");
	}
	system("pause");
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值