GMM之隐变量

小白一枚,补充一下隐函数的知识,如有错误,欢迎大家交流指出。

GMM之隐变量

在GMM中,我们会用到隐变量这个概念,那么隐变量到底是什么?它的作用是什么呢,接下来我们具体分析。
在这里插入图片描述

1. 为什么要引入隐变量Z?
如图所示,这是一个二维的高斯混合模型,图上为很多的样本,我们以红色的样本为例。我们想知道红色的样本属于哪一个高斯分布(C1还是C2),事实上,这个红色样本是既属于C1也属于C2的,只不过属于C1的概率更大,从图中就可以看出,红色样本是距离C1近的。如果我们每个样本都用C1,C2来表示,这样是不方便的,因此我们引入了隐变量Z,用Z来表示样本属于哪个高斯分布。

2. 什么是隐变量Z?
隐变量是一个辅助变量,表示的是样本x属于哪一个高斯分布。
隐变量是一个离散的随机变量。
在这里插入图片描述
3.引入隐变量的要求

  1. 引入隐变量是为了使问题求解起来更简单
  2. 引入隐变量,要确保观测数据的边缘概率保持不变
  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 下面是一段使用python编写的高斯混合模型变量后验分布代码: ``` import numpy as np from scipy.stats import multivariate_normal class GaussianMixtureModel: def __init__(self, n_components, max_iter=100, tol=1e-3): self.n_components = n_components self.max_iter = max_iter self.tol = tol def fit(self, X): n_samples, n_features = X.shape self.weights_ = np.ones(self.n_components) / self.n_components self.means_ = np.random.randn(self.n_components, n_features) self.covariances_ = np.array([np.eye(n_features)] * self.n_components) responsibilities = np.zeros((n_samples, self.n_components)) log_likelihoods = [] for i in range(self.max_iter): # E-step for j in range(self.n_components): responsibilities[:, j] = self.weights_[j] * \ multivariate_normal.pdf(X, mean=self.means_[j], cov=self.covariances_[j]) responsibilities /= responsibilities.sum(axis=1, keepdims=True) # M-step n_responsibilities = responsibilities.sum(axis=0) self.weights_ = n_responsibilities / n_samples self.means_ = (responsibilities.T @ X) / n_responsibilities[:, None] self.covariances_ = np.zeros((self.n_components, n_features, n_features)) for j in range(self.n_components): delta = X - self.means_[j] self.covariances_[j] = (responsibilities[:, j, None, None] * delta).T @ delta / n_responsibilities[j] # Calculate log likelihood log_likelihood = 0 for j in range(self.n_components): log_likelihood += self.weights_[j] * \ multivariate_normal.pdf(X, mean=self.means_[j], cov=self.covariances_[j]) log_likelihood = np.log(log_likelihood).sum() log_likelihoods.append(log_likelihood) # Check convergence if i > 0 and np.abs(log_likelihoods[-1] - log_likelihoods[-2]) < self.tol: break return log_likelihoods def predict(self, X): n_samples, n_features = X.shape responsibilities = np.zeros((n_samples, self.n_components)) for ### 回答2: 下面是Python编写的高斯混合模型变量的后验分布的代码: ```python import numpy as np def posterior(data, means, covariances, weights): num_samples = len(data) num_clusters = len(means) # 初始化后验分布矩阵 posterior_matrix = np.zeros((num_samples, num_clusters)) # 计算每个样本点在每个混合分布下的概率 for i in range(num_samples): for j in range(num_clusters): posterior_matrix[i, j] = weights[j] * gaussian(data[i], means[j], covariances[j]) # 归一化概率 posterior_matrix = posterior_matrix / np.sum(posterior_matrix, axis=1, keepdims=True) return posterior_matrix def gaussian(x, mean, covariance): # 计算高斯分布的概率密度函数 d = len(mean) exponent = -0.5 * np.dot(np.dot((x - mean).T, np.linalg.inv(covariance)), (x - mean)) coefficient = 1 / np.sqrt((2 * np.pi)**d * np.linalg.det(covariance)) return coefficient * np.exp(exponent) ``` 这个代码的`posterior`函数通过给定的数据、均值、协方差、权重计算高斯混合模型变量的后验分布。先初始化一个后验分布矩阵,然后遍历所有样本点和混合分布,计算每个样本点在每个混合分布下的概率,并保存在后验分布矩阵中。最后,归一化每个样本点在所有混合分布下的概率,得到最终的后验分布矩阵。 `gaussian`函数计算给定输入数据点x、均值mean、协方差covariance下的高斯分布的概率密度函数。首先计算指数部分的值,然后计算系数部分的值,最后乘积得到概率密度函数的值。 ### 回答3: 高斯混合模型(Gaussian Mixture Model,GMM)的变量的后验分布可以使用EM算法来进行估计。下面是Python代码的实现示例: ```python import numpy as np # 初始化GMM参数 K = 3 # 高斯分量数量 D = 2 # 数据维度 N = 100 # 数据样本数量 data = np.random.randn(N, D) # 生成随机数据 alpha = np.ones(K) / K # 混合系数 mu = np.random.randn(K, D) # 均值参数 sigma = np.array([np.eye(D)] * K) # 协方差矩阵参数 # 定义E步计算变量的后验分布 def calc_posterior(data, alpha, mu, sigma): posterior = np.zeros((N, K)) # 后验分布矩阵 for i in range(N): for j in range(K): # 计算每个数据点对应每个高斯分量的后验概率 posterior[i, j] = alpha[j] * multivariate_normal(data[i], mu[j], sigma[j]) posterior[i] /= np.sum(posterior[i]) # 归一化 return posterior # 定义多元高斯分布函数 def multivariate_normal(x, mu, sigma): d = len(mu) det = np.linalg.det(sigma) inv = np.linalg.inv(sigma) exponent = -0.5 * np.dot(np.dot((x - mu).T, inv), (x - mu)) coefficient = 1.0 / (np.power(2 * np.pi, d/2) * np.sqrt(det)) return coefficient * np.exp(exponent) # E步计算变量的后验分布 posterior = calc_posterior(data, alpha, mu, sigma) print("后验分布:") print(posterior) ``` 在以上代码中,我们首先生成了一些随机的二维数据作为拟合目标。然后使用EM算法初始化GMM的参数,包括混合系数alpha、均值参数mu和协方差矩阵参数sigma。通过定义的E步函数`calc_posterior`计算变量的后验分布,并输出结果。 需要注意的是,以上代码仅为示例,实际应用中可能需要进行参数初始化和迭代优化等操作来更好地拟合数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值