numpy基础--4.随机数的生成以及矩阵的运算2

import numpy as np
sample = np.random.random((3,2))#生成3行2列从0到1的随机数
print(sample)
print(type(sample))
out:
[[0.60438951 0.34667702]
 [0.18884105 0.51541119]
 [0.03031478 0.34442602]]
out:
<class 'numpy.ndarray'>
sample2 = np.random.normal(size=(3,2))#生成3行2列符合标准正态的随机数
print(sample2)
out:
[[ 0.21854734 -0.47909311]
 [ 0.79658506  0.95975048]
 [-1.69823131 -1.13637119]]
sample3 = np.random.randint(0,10,size=(3,2))#生成3行2列从0到1的随机整数
print(sample3)
out:
[[3 2]
 [8 6]
 [7 9]]
np.sum(sample)#求和
out:3.075403867825465
np.min(sample)
out:0.035139839607487344
np.max(sample)
out:0.9874316838109113
np.sum(sample,axis=0)#对列求和
out:array([1.89813692, 1.17726695])
np.sum(sample,axis=1)#对行求和
out:array([1.47406106, 0.44446049, 1.15688231])
print(sample)
out:
[[0.8755654  0.59849567]
 [0.03513984 0.40932065]
 [0.98743168 0.16945063]]
np.argmin(sample)#求最小值的索引
out:2
np.argmax(sample)
out:4
#求平均值,两种写法作用一样
print(sample.mean())
print(np.mean(sample))
out:0.5125673113042442
np.median(sample)#求中位数,双数求中间两个数的平均值
out:0.5039081597664679
np.sqrt(sample)#开方
out:
array([[0.93571651, 0.77362502],
       [0.18745623, 0.63978172],
       [0.99369597, 0.41164381]])
sample4 = np.random.randint(0,10,size=(1,10))
print(sample4)
out:
[[0 7 6 0 2 8 1 2 2 4]]
np.sort(sample4)#排序
out:
array([[0, 0, 1, 2, 2, 2, 4, 6, 7, 8]])
np.sort(sample3)#对每行进行排序
out:
array([[2, 3],
       [6, 8],
       [7, 9]])
np.clip(sample4,2,7)#小于2的就变成2,大于7的就变成7
out:
array([[2, 7, 6, 2, 2, 7, 2, 2, 2, 4]])
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值