HDU2604

转载博客:http://blog.csdn.net/hcbbt/article/details/38363353
HDU 2604 Queuing (矩阵快速幂)

ACM

题目地址:HDU 2604 Queuing

题意:
n个人排队,f表示女,m表示男,包含子串‘fmf’和‘fff’的序列为O队列,否则为E队列,有多少个序列为E队列。

分析:
矩阵快速幂入门题。
下面引用巨巨解释:

用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1); 
如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff,其中fff和fmf不满足题意所以我们不考虑,但是如果是 
mmf的话那么前n-3可以找满足条件的即:f(n-3);如果是mff的话,再往前考虑一位的话只有mmff满足条件即:f(n-4) 
所以f(n)=f(n-1)+f(n-3)+f(n-4),递推会跪,可用矩阵快速幂 
构造一个矩阵: 
pic

矩阵快速幂和普通的快速幂原理是一样的,如果不懂可以先去补补快速幂。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int l,m;
struct mat
{
  long long mm[4][4];
};
mat operator*(mat a,mat b)
{
    mat c;
    memset(c.mm,0,sizeof(c.mm));
    for(int i=0;i<4;i++)
        for(int j=0;j<4;j++)
        for(int k=0;k<4;k++)
    {
        c.mm[i][j]+=a.mm[i][k]*b.mm[k][j];
        c.mm[i][j]%=m;
    }
    return c;
}
void pow()
{
    mat res,ans;
    memset(res.mm,0,sizeof(res.mm));
    memset(ans.mm,0,sizeof(ans.mm));
    ans.mm[0][0]=9;ans.mm[0][1]=6;ans.mm[0][2]=4;ans.mm[0][3]=2;
    for(int i=0;i<3;i++)
        res.mm[i][i+1]=1;
    for(int i=0;i<4;i++)
        res.mm[i][0]=1;
    res.mm[1][0]=0;
    l-=4;
    while(l)
    {
        if(l%2==1)
            ans=ans*res;
        res=res*res;
        l/=2;
    }
    printf("%lld\n",ans.mm[0][0]%m);
}
int main()
{
    while(~scanf("%d%d",&l,&m))
    {
        if(l==1)
        {
            printf("%d\n",2%m);
        }
        else if(l==2)
        {
            printf("%d\n",4%m);
        }
        else if(l==3)
        {
            printf("%d\n",6%m);
        }
        else if(l==4)
        {
            printf("%d\n",9%m);
        }
        else
        {
            pow();
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值