转载博客:http://blog.csdn.net/hcbbt/article/details/38363353
HDU 2604 Queuing (矩阵快速幂)
ACM
题目地址:HDU 2604 Queuing
题意:
n个人排队,f表示女,m表示男,包含子串‘fmf’和‘fff’的序列为O队列,否则为E队列,有多少个序列为E队列。
分析:
矩阵快速幂入门题。
下面引用巨巨解释:
用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1);
如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff,其中fff和fmf不满足题意所以我们不考虑,但是如果是
mmf的话那么前n-3可以找满足条件的即:f(n-3);如果是mff的话,再往前考虑一位的话只有mmff满足条件即:f(n-4)
所以f(n)=f(n-1)+f(n-3)+f(n-4),递推会跪,可用矩阵快速幂
构造一个矩阵:
pic
矩阵快速幂和普通的快速幂原理是一样的,如果不懂可以先去补补快速幂。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int l,m;
struct mat
{
long long mm[4][4];
};
mat operator*(mat a,mat b)
{
mat c;
memset(c.mm,0,sizeof(c.mm));
for(int i=0;i<4;i++)
for(int j=0;j<4;j++)
for(int k=0;k<4;k++)
{
c.mm[i][j]+=a.mm[i][k]*b.mm[k][j];
c.mm[i][j]%=m;
}
return c;
}
void pow()
{
mat res,ans;
memset(res.mm,0,sizeof(res.mm));
memset(ans.mm,0,sizeof(ans.mm));
ans.mm[0][0]=9;ans.mm[0][1]=6;ans.mm[0][2]=4;ans.mm[0][3]=2;
for(int i=0;i<3;i++)
res.mm[i][i+1]=1;
for(int i=0;i<4;i++)
res.mm[i][0]=1;
res.mm[1][0]=0;
l-=4;
while(l)
{
if(l%2==1)
ans=ans*res;
res=res*res;
l/=2;
}
printf("%lld\n",ans.mm[0][0]%m);
}
int main()
{
while(~scanf("%d%d",&l,&m))
{
if(l==1)
{
printf("%d\n",2%m);
}
else if(l==2)
{
printf("%d\n",4%m);
}
else if(l==3)
{
printf("%d\n",6%m);
}
else if(l==4)
{
printf("%d\n",9%m);
}
else
{
pow();
}
}
}