检测原理
使用形态学梯度检测或sobel边缘检测(y方向)来检测出图片中物体的垂直边缘;
将检测结果转化成二值化图像;
使用闭运算(先膨胀,再腐蚀)进行区域填充,填补空洞,同时切断各个白色区域之间的连通;
使用轮廓检测函数findContours,找到每个白色区域的外切矩形坐标;
对找到的所有轮廓进行遍历,根据车牌的特征(宽高比、面积比、像素等)进行筛选,输出是车牌的轮廓坐标,并在原图像上画出框。
该算法只对跟车视频(如车上摄像头拍摄的视频)中的车牌检测效果较好,且对目标车辆的车牌与我们的摄像头距离有一定的要求(因为有车牌轮廓最小长宽的要求),限制性比较大。
代码实现
#include "pch.h"
#include <iostream>
#include <string>
#include <cxcore.h>
#include <cv.h>
#include <highgui.h>
#include <opencv2/opencv.hpp>
#include <opencv2/video.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp> //包含imread, imshow等
#include <opencv2/imgproc/imgproc.hpp> //包含cvtColor等
using namespace std;
using namespace cv;
string window_name_2 = "license_plate_detect";
string window_name_3 = "video_license_plate_detect";
// 使用形态学梯度检测或sobel边缘检测(y方向)来检测出垂直边缘
// 首先进行边缘检测,检测垂直边缘,使用形态学梯度、或者Sobel边缘检测的垂直方向
// 对边缘实现二值化
// 使用闭运算进行区域填充,填补空洞
// 使用轮廓检测findContours,找到车牌区域的轮廓
// 对找到的轮廓进行遍历,根据车牌的特征(宽高比、面积比、像素等)进行筛选,输出
Mat get_license_plate(int width, int height, Mat srcGray) {
Mat result;
//形态学梯度边缘检测,形态学梯度即膨胀图与腐蚀图之差,提取物体边缘
//用Mat(1,2) ,用来检测出垂直的边缘,尽量减少横向的边缘连通车牌区域
morphologyEx(srcGray, result, MORPH_GRADIENT, Mat(1, 2, CV_8U, Scalar(1)));
//或用Sobel边缘检测,求y方向的Sobel边缘
//GaussianBlur(srcGray, srcGray, Size(3, 3),2);
//Sobel(srcGray, edgeYMat, CV_16S, 2, 0, 3, 1, 0, BORDER_DEFAULT);
//线性变换,转换输入数组元素为8位无符号整形
//convertScaleAbs(edgeYMat, result);
//这是垂直方向边缘检测的结果,尽量减少横向的边缘连通车牌区域
//imshow(window_name_2, result);
//图像二值化
threshold(result, result, 255 * 0.1, 255, THRESH_BINARY);
//二值化后结果
//imshow(window_name_2, result);
//开运算: 先腐蚀,再膨胀,可清除一些小东西(亮的),放大局部低亮度的区域
//闭运算:先膨胀,再腐蚀,可清除小黑点
//水平方向闭运算
//闭运算:填补空洞
//检测目标尺寸400到600使用的闭运算算子为(1x25)水平方向,(8x1)垂直方向
if (width >= 400 && width < 600) {
morphologyEx(result, result, MORPH_CLOSE,Mat(1, 25, CV_8U, Scalar(1)));
}
//检测目标尺寸200到300使用的闭运算算子为(1x20)水平方向,(6x1)垂直方向
else if (width >= 200 && width < 300) {
morphologyEx(result, result, MORPH_CLOSE, Mat(1, 20, CV_8U, Scalar(1)));
}
//检测目标尺寸大于600使用的闭运算算子为(1x28)水平方向,(6x1)垂直方向
else if (width >= 600) {
morphologyEx(result, result, MORPH_CLOSE, Mat(1, 28, CV_8U, Scalar(1)));
}
//其余尺寸使用的闭运算算子为(1x15)水平方向,(4x1)垂直方向
else {
morphologyEx(result, result, MORPH_CLOSE, Mat(1, 15, CV_8U, Scalar(1)));
}
//水平方向闭运算后的结果
//imshow(window_name_2, result);
//垂直方向闭运算
if (width >= 400 && width < 600) {
morphologyEx(result, result, MORPH_CLOSE, Mat(8, 1, CV_8U, Scalar(1)));
}
else if (width >= 200 && width < 300) {
morphologyEx(result, result, MORPH_CLOSE, Mat(6, 1, CV_8U, Scalar(1)));
}
else if (width >= 600) {
morphologyEx(result, result, MORPH_CLOSE, Mat(10, 1, CV_8U, Scalar(1)));
}
else {
morphologyEx(result, result, MORPH_CLOSE, Mat(4, 15, CV_8U, Scalar(1)));
}
//垂直方向闭运算后的结果
//imshow(window_name_2, result);
return result;
}
// 对图片进行车牌检测,请输入彩色图像矩阵
Mat license_plate_detect(Mat pScr) {
Mat graypScr;
cvtColor(pScr, graypScr, CV_BGR2GRAY);
// 车牌轮廓识别(得到闭运算后的结果,有许多白色的区域(候选车牌区域)
Mat result = get_license_plate(400, 300, graypScr);
//连通域检测
vector<vector<Point>> blue_contours;
vector<Rect>blue_rect;
//FindContours从二值图像中检索轮廓,并返回检测到的轮廓的个数
findContours(result.clone(), blue_contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
//遍历检测到的轮廓,进行车牌目标提取
for (size_t i = 0; i<blue_contours.size(); i++) {
// 找到一个最小的矩形把轮廓包起来
Rect rect = boundingRect(blue_contours[i]);
//矩形区域宽高比
double wh_ratio = double(rect.width) / rect.height;
//非零像素点数,即白色像素点数(白色为255)
int sub = countNonZero(result(rect));
//白色像素占比
double ratio = double(sub) / rect.area();
//车牌特征,条件判断,宽高比大于2且小于8,高度大于12且宽度大于60且白色像素占比大于0.4
if (wh_ratio > 2 && wh_ratio < 8 && rect.height>6 &&
rect.width > 30 && ratio > 0.6) {
// 在彩色图pScr上画框框出车牌
rectangle(pScr, rect, Scalar(0, 0, 255), 2, 8, 0);
//只显示graypScr中rect区域,也就是车牌所在区域
//imshow(window_name_2, pScr(rect));
//waitKey(0);
}
}
//imshow(window_name_2, pScr);
//waitKey(0);
//destroyAllWindows();
return pScr;
}
// 视频中进行车牌目标检测
void video_license_plate_detect(string load_path) {
VideoCapture capture;
Mat frame,result;
if (load_path == "")
frame = capture.open(0);
else
frame = capture.open(load_path);
if (capture.isOpened()) {
while (1) {
capture >> frame;
if (frame.empty())
break;
if (waitKey(10) >= 0)
break;
result = license_plate_detect(frame);
namedWindow(window_name_3, WINDOW_AUTOSIZE);
imshow(window_name_3, frame);
}
}
}
int main() {
string load_path_car = "C:/Users/zgcr6/Desktop/高图实验/zonghe/save/car.jpg";
string load_path_license_plate_video = "C:/Users/zgcr6/Desktop/高图实验/zonghe/save/car_2.avi";
Mat pScr=imread(load_path_car, 1);
Mat result=license_plate_detect(pScr);
video_license_plate_detect(load_path_license_plate_video);
return 0;
}