Python程序生成一些三维数据,然后用一个平面拟合它。
import tensorflow as tf
import numpy as np
#使用NumPy生成假数据,总共100个点
x_data=np.float32(np.random.rand(2,100))
y_data=np.dot([0.100,0.200],x_data)+0.300
#构造一个线性模型
b=tf.Variable(tf.zeros([1]))
W=tf.Variable(tf.random_uniform([1,2],-1.0,1.0))
y=tf.matmul(W,x_data)+b
#最小方差
loss=tf.reduce_mean(tf.square(y-y_data))
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)
#初始化变量
init=tf.initialize_all_variables()
#启动图
sess=tf.Session()
sess.run(init)
#拟合平面
for step in range(0,201):
sess.run(train)
if step%20==0:
print(step,sess.run(W),sess.run(b))