TensorFlow学习一

Python程序生成一些三维数据,然后用一个平面拟合它。

import tensorflow as tf
import numpy as np

#使用NumPy生成假数据,总共100个点
x_data=np.float32(np.random.rand(2,100))
y_data=np.dot([0.100,0.200],x_data)+0.300

#构造一个线性模型
b=tf.Variable(tf.zeros([1]))
W=tf.Variable(tf.random_uniform([1,2],-1.0,1.0))
y=tf.matmul(W,x_data)+b

#最小方差
loss=tf.reduce_mean(tf.square(y-y_data))
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)

#初始化变量
init=tf.initialize_all_variables()

#启动图
sess=tf.Session()
sess.run(init)

#拟合平面
for step in range(0,201):
    sess.run(train)
    if step%20==0:
        print(step,sess.run(W),sess.run(b))

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值