神经网络- 吴恩达Andrew Ng CNN卷积神经网络 Foundations of Convolutional Neural Networks Week1 知识总结

本文深入探讨了卷积神经网络(CNN)在计算机视觉中的应用,包括边缘检测、图像 padding、步长卷积、体积卷积以及池化层等关键概念。通过实例展示了CNN如何构建和工作,解释了为何选择使用卷积结构来处理图像数据。

1. Convolutional Neural Networks - Computer vision

在这里插入图片描述
在这里插入图片描述

2. Convolutional Neural Networks - Edge detection example

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3. Convolutional Neural Networks - More edge detection

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4. Convolutional Neural Networks - Padding

在这里插入图片描述
在这里插入图片描述

5. Convolutional Neural Networks - Strided convolutions

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

6. Convolutional Neural Networks - Convolutions over volumes

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

7. Convolutional Neural Networks - One layer of a convolutional networks

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

8. Convolutional Neural Networks - A simple convolution network example

在这里插入图片描述
在这里插入图片描述

9. Convolutional Neural Networks - Pooling layers

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

10. Convolutional Neural Networks - Convolutional neural network example

在这里插入图片描述
在这里插入图片描述

11. Convolutional Neural Networks - why convolutions?

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考

https://www.coursera.org/learn/convolutional-neural-networks/supplement/pd3QN/lectures-in-pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值