如何让移动硬盘在Mac和Windows上通用使用

本文指导如何在Mac上将新购的NTFS格式移动硬盘转换为exFAT,以便跨平台使用,包括格式化步骤和注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

刚入手了一块新的移动硬盘,Mac电脑插上却发现一片空白无法使用,这是什么情况呢?

请添加图片描述

原来一般一块新的大容量移动硬盘刚入手时,默认是NTFS格式,这是Windows的一种特有硬盘格式,但是Mac上只能读取不能写入。

Mac和Windows上通用的格式是FAT系列,包括FAT16、FAT32、exFAT,FAT16单个文件最大为2G,FAT32单个文件最大为4G,考虑到目前的高清视频、安装包等动辄10G,因此要用exFAT格式。

无论Mac还是Windows都提供了硬盘格式化工具,这里介绍Mac系统如何操作:

提醒一下,如果是新盘不需要备份,如果里面有数据的话需要备份一下,格式化的话数据就都没有了。

选择磁盘工具→点击对应盘符→点击右上方【抹掉】→弹出对话框中的格式选择为exFAT→抹掉→完成。 *如果弹出对话框(是否迁移或是否备份),选择不使用。


首先,选择磁盘工具

在这里插入图片描述
硬盘连接到mac上,就会显示在左侧列表中。

在这里插入图片描述
NTFS格式在mac下只能读,不能写。为了在mac和Windows上通用,果断更改为exFAT吧。

接下来,点击选择对应盘符→点击右上方【抹掉】→ 弹出对话框中的格式选择为exFAT

在这里插入图片描述
→抹掉

在这里插入图片描述
*如果弹出对话框(是否迁移或是否备份),选择不使用。

在这里插入图片描述
→完成,格式化成功

在这里插入图片描述

这样新的移动硬盘就格式化成exFAT格式了,可以在Mac和Windows上通用使用了。


 /) /)
ฅ(• - •)ฅ ~ ~ ฅ’ω’ฅ

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值