poj1463-1A

题目大意,有一些节点,节点间有路,节点上放哨兵可以监视和此节点直接连接的节点。求用最少的哨兵,监视所有的节点,没有盲区。。。。

 

其实一看就知道是一个dp,01背包。每个节点上只有两种情况,放或者不放,按平时来说就是简单的dp,但是这次是一个树,所以要在树上做01背包。

 

状态方程很好想:

dp【i】【0】表示第i点不放哨兵

dp【i】【1】表示第i点放哨兵

那么我们知道:

dp【i】【0】 = dp【j0】【1】 + dp【j1】【1】 + dp【j2】【1】+dp【j3】【1】。。。。(j1,j2, j3。。 jm为i的孩子,也就是说如果i不放,那么他的孩子必须放)。

dp【i】【1】 = min(dp【j0】【1】, dp【j0】【0】) + min(dp【j1】【1】, dp【j1】【0】)。。。。(j1,j2, j3 。。jm为i的孩子,也就是说如果i放,那么他的孩子必可放可不放,求最小值)。

 

有了状态方程代码就好些了

如下:

#include<iostream>
using namespace std;

#define nMax 1505
#define inf 0x3ffffff

int son[nMax], brother[nMax];
bool father[nMax];
int dp[nMax][2];
int n;

void dfs(int root)
{
	dp[root][0] = 0;
	dp[root][1] = 1;
	int k = son[root];
	while (k != -1)
	{
		dfs(k);
		dp[root][0] += dp[k][1];//如果不放,孩子必放
		dp[root][1] += min(dp[k][0], dp[k][1]);//如果放,孩子可放可不放,求最小值
		k = brother[k];
	}
}

int main()
{
	while (scanf("%d", &n) != EOF)
	{
		int root;
		memset(son, -1, sizeof(son));
		memset(father, false, sizeof(father));
		int u, vNum, v;
		for (int i = 0; i < n; ++ i)
		{
			scanf("%d:(%d)", &u, &vNum);
			for (int j = 0; j < vNum; ++ j)
			{
				scanf("%d", &v);
				brother[v] = son[u];//同一个父亲节点下的上一个兄弟
				son[u] = v;//u的孩子
				father[v] = true;//判断是否有父亲,求根节点
			}
		}
		for (int i = 0; i < n; ++ i)
		{
			if (!father[i])
			{
				root = i;
				break;
			}
		}
		dfs(root);
		printf("%d\n", dp[root][0] < dp[root][1] ? dp[root][0] : dp[root][1]);
	}
	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值