Deep Hash in Large Scale Image Retrieval
深度哈希方法及其在移动视觉搜索中的应用
这里介绍两篇深度hash文章
01 Simultaneous Feature Learning and Hash Coding with Deep Neural Networks CVPR2015
02 Deep Hashing Network for Efficient Similarity Retrieval∗(2016 AAAI DHN)
hash目标
深度哈希将传统的哈希学习与量化过程整合成端到端的
1 DNNH
Simultaneous Feature Learning and Hash Coding with Deep Neural Networks
(2015 CVPR DNNH )
亮点:同时进行特征提取和哈希编码
设计的divide-and-encode module
对应数据信息保留目标2:保留数据信息量:信息冗余
(1) 总量一定的情况下,信息重复得越少越好
(2) 信息冗余体现在同样的信息被多个神经元携带
:两两不相关
那么如何实现输出为0和1且可导,其实并非严格的只输出01,作者采用动态的阶跃阈值实现在输出在可导的情况下,尽量让输出结果还是达到为离散01值的效果。
2 DHN
Deep Hashing Network for Efficient Similarity Retrieval∗(2016 AAAI DHN)
相对于DNNH 主要改进的地方
1 设计一个有理论依据的 pairwise 交叉熵 。
2 设计一个有理论依据的 量化损失函数。
从理论的角度:
作者提取了双峰拉普拉斯分布,作者先假设网络输出的01值应该符合双峰拉普拉斯分布特征,也就是输出尽量为0和1且概率相等(这点是第一篇文章没有保障的);
然后才有极大后验概率求解得到一个交叉熵函数
作者从正面证明自己的推倒:
作者结合ITQ这篇论文提出的量化误差的度量方法对自己的目标损失进行论证。
这篇文章本人认为非常好,非常值得读。
* 深度哈希主要的研究的点*
深度模型学习图像表示
sigmoid/tanh函数限制输出范围
不同的损失函数
有针对性的网络结构